Localization and Perturbation of Zeros of Entire Functions
One of the most important problems in the theory of entire functions is the distribution of the zeros of entire functions. Localization and Perturbation of Zeros of Entire Functions is the first book to provide a systematic exposition of the bounds for the zeros of entire functions and variations of zeros under perturbations. It also offers a new approach to the investigation of entire functions based on recent estimates for the resolvents of compact operators.

After presenting results about finite matrices and the spectral theory of compact operators in a Hilbert space, the book covers the basic concepts and classical theorems of the theory of entire functions. It discusses various inequalities for the zeros of polynomials, inequalities for the counting function of the zeros, and the variations of the zeros of finite-order entire functions under perturbations. The text then develops the perturbation results in the case of entire functions whose order is less than two, presents results on exponential-type entire functions, and obtains explicit bounds for the zeros of quasipolynomials. The author also offers additional results on the zeros of entire functions and explores polynomials with matrix coefficients, before concluding with entire matrix-valued functions.

This work is one of the first to systematically take the operator approach to the theory of analytic functions.

1101537369
Localization and Perturbation of Zeros of Entire Functions
One of the most important problems in the theory of entire functions is the distribution of the zeros of entire functions. Localization and Perturbation of Zeros of Entire Functions is the first book to provide a systematic exposition of the bounds for the zeros of entire functions and variations of zeros under perturbations. It also offers a new approach to the investigation of entire functions based on recent estimates for the resolvents of compact operators.

After presenting results about finite matrices and the spectral theory of compact operators in a Hilbert space, the book covers the basic concepts and classical theorems of the theory of entire functions. It discusses various inequalities for the zeros of polynomials, inequalities for the counting function of the zeros, and the variations of the zeros of finite-order entire functions under perturbations. The text then develops the perturbation results in the case of entire functions whose order is less than two, presents results on exponential-type entire functions, and obtains explicit bounds for the zeros of quasipolynomials. The author also offers additional results on the zeros of entire functions and explores polynomials with matrix coefficients, before concluding with entire matrix-valued functions.

This work is one of the first to systematically take the operator approach to the theory of analytic functions.

105.0 In Stock
Localization and Perturbation of Zeros of Entire Functions

Localization and Perturbation of Zeros of Entire Functions

by Michael Gil'
Localization and Perturbation of Zeros of Entire Functions

Localization and Perturbation of Zeros of Entire Functions

by Michael Gil'

Paperback

$105.00 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

One of the most important problems in the theory of entire functions is the distribution of the zeros of entire functions. Localization and Perturbation of Zeros of Entire Functions is the first book to provide a systematic exposition of the bounds for the zeros of entire functions and variations of zeros under perturbations. It also offers a new approach to the investigation of entire functions based on recent estimates for the resolvents of compact operators.

After presenting results about finite matrices and the spectral theory of compact operators in a Hilbert space, the book covers the basic concepts and classical theorems of the theory of entire functions. It discusses various inequalities for the zeros of polynomials, inequalities for the counting function of the zeros, and the variations of the zeros of finite-order entire functions under perturbations. The text then develops the perturbation results in the case of entire functions whose order is less than two, presents results on exponential-type entire functions, and obtains explicit bounds for the zeros of quasipolynomials. The author also offers additional results on the zeros of entire functions and explores polynomials with matrix coefficients, before concluding with entire matrix-valued functions.

This work is one of the first to systematically take the operator approach to the theory of analytic functions.


Product Details

ISBN-13: 9781138116788
Publisher: Taylor & Francis
Publication date: 06/07/2017
Series: Lecture Notes in Pure and Applied Mathematics
Pages: 316
Product dimensions: 6.12(w) x 9.19(h) x (d)

About the Author

Michael Gil’ is a professor in the Department of Mathematics at Ben Gurion University of the Negev in Israel.

Table of Contents

Finite Matrices. Eigenvalues of Compact Operators. Some Basic Results of the Theory of Analytic Functions. Polynomials. Bounds for Zeros of Entire Functions. Perturbations of Finite-Order Entire Functions. Functions of Order Less than Two. Exponential-Type Functions. Quasipolynomials. Transforms of Finite-Order Entire Functions and Canonical Products. Polynomials with Matrix Coefficients. Entire Matrix-Valued Functions. Bibliography. Index.

From the B&N Reads Blog

Customer Reviews