Low-Code AI: A Practical Project-Driven Introduction to Machine Learning
Take a data-first and use-case-driven approach with Low-Code AI to understand machine learning and deep learning concepts. This hands-on guide presents three problem-focused ways to learn no-code ML using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. In each case, you'll learn key ML concepts by using real-world datasets with realistic problems.



Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data; feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications.



You'll learn how to distinguish between structured and unstructured data and the challenges they present; visualize and analyze data; preprocess data for input into a machine learning model; differentiate between the regression and classification supervised learning models; compare different ML model types and architectures, from no code to low code to custom training; design, implement, and tune ML models; and export data to a GitHub repository for data management and governance.
1143284607
Low-Code AI: A Practical Project-Driven Introduction to Machine Learning
Take a data-first and use-case-driven approach with Low-Code AI to understand machine learning and deep learning concepts. This hands-on guide presents three problem-focused ways to learn no-code ML using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. In each case, you'll learn key ML concepts by using real-world datasets with realistic problems.



Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data; feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications.



You'll learn how to distinguish between structured and unstructured data and the challenges they present; visualize and analyze data; preprocess data for input into a machine learning model; differentiate between the regression and classification supervised learning models; compare different ML model types and architectures, from no code to low code to custom training; design, implement, and tune ML models; and export data to a GitHub repository for data management and governance.
19.99 Pre Order
Low-Code AI: A Practical Project-Driven Introduction to Machine Learning

Low-Code AI: A Practical Project-Driven Introduction to Machine Learning

by Gwendolyn Stripling

Narrated by Stephanie Dillard

Unabridged

Low-Code AI: A Practical Project-Driven Introduction to Machine Learning

Low-Code AI: A Practical Project-Driven Introduction to Machine Learning

by Gwendolyn Stripling

Narrated by Stephanie Dillard

Unabridged

Audiobook (Digital)

$19.99
FREE With a B&N Audiobooks Subscription | Cancel Anytime
$0.00

Free with a B&N Audiobooks Subscription | Cancel Anytime

START FREE TRIAL

Already Subscribed? 

Sign in to Your BN.com Account

Available for Pre-Order. This item will be released on September 30, 2025

Listen on the free Barnes & Noble NOOK app


Related collections and offers

FREE

with a B&N Audiobooks Subscription

Or Pay $19.99

Overview

Take a data-first and use-case-driven approach with Low-Code AI to understand machine learning and deep learning concepts. This hands-on guide presents three problem-focused ways to learn no-code ML using AutoML, low-code using BigQuery ML, and custom code using scikit-learn and Keras. In each case, you'll learn key ML concepts by using real-world datasets with realistic problems.



Business and data analysts get a project-based introduction to ML/AI using a detailed, data-driven approach: loading and analyzing data; feeding data into an ML model; building, training, and testing; and deploying the model into production. Authors Michael Abel and Gwendolyn Stripling show you how to build machine learning models for retail, healthcare, financial services, energy, and telecommunications.



You'll learn how to distinguish between structured and unstructured data and the challenges they present; visualize and analyze data; preprocess data for input into a machine learning model; differentiate between the regression and classification supervised learning models; compare different ML model types and architectures, from no code to low code to custom training; design, implement, and tune ML models; and export data to a GitHub repository for data management and governance.

Product Details

BN ID: 2940195691868
Publisher: Ascent Audio
Publication date: 09/30/2025
Edition description: Unabridged
From the B&N Reads Blog

Customer Reviews