Low-Energy Electron Diffraction: Experiment, Theory and Surface Structure Determination

Sending request ...

More About This Book

Product Details

  • ISBN-13: 9783642827235
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 12/15/2011
  • Series: Springer Series in Surface Sciences , #6
  • Edition description: Softcover reprint of the original 1st ed. 1986
  • Edition number: 1
  • Pages: 624
  • Product dimensions: 6.14 (w) x 9.21 (h) x 1.26 (d)

Table of Contents

1. The Relevance and Historical Development of LEED.- 1.1 The Relevance of Surface Crystallography.- 1.2 The Historical Development of LEED.- 1.2.1 The Period Before Wave Mechanics.- 1.2.2 The Discovery of Electron Diffraction.- 1.2.3 The Aftermath of the Discovery of Electron Diffraction.- 1.2.4 The Period 1930 – 1965.- 1.2.5 The Renaissance of LEED: Experimental Advances in the Mid-1960s.- 1.2.6 The Theoretical Solution: The Late 1960s and Early 1970s.- 1.2.7 The Era of Structural Determination: The 1970s and 1980s.- 2. The LEED Experiment.- 2.1 General Features of LEED Experiments.- 2.2 Sample Mounting.- 2.3 Electron Gun and Display System.- 2.3.1 Electron Gun.- 2.3.2 Display System.- 2.4 Methods of Data Acquisition.- 2.4.1 Faraday-Cup Collector and Spot Photometer.- 2.4.2 Photographic Technique.- 2.4.3 Vidicon Camera Method.- 2.4.4 Position-Sensitive Detector.- 2.5 Instrumental Response Function.- 2.5.1 Basic Concepts.- 2.5.2 Contributions to the Response Width.- 2.6 Determination of Angle of Incidence.- 2.6.1 Different Methods.- 2.6.2 Theory.- 2.6.3 An Example.- 2.7 Determination of the Debye Temperature.- 2.7.1 The Debye Temperature Normal to the Crystal Surface.- 2.7.2 The Debye Temperature Parallel to the Crystal Surface.- 3. Ordered Surfaces: Structure and Diffraction Pattern.- 3.1 Two-Dimensional Periodicity and the LEED Pattern.- 3.1.1 Miller and Miller-Bravais Indices.- 3.1.2 Lattice and Basis.- 3.1.3 Direct and Reciprocal Lattices.- 3.2 Superlattices at Surfaces.- 3.3 Stepped and Kinked Surfaces.- 3.3.1 The Step Notation.- 3.3.2 The Microfacet Notation for Cubic Materials.- 3.3.3 Unit Cells of Stepped and Kinked Surfaces.- 3.4 Symmetries and Domains at Surfaces.- 3.4.1 Symmetries in Two Dimensions.- 3.4.2 Domains.- 3.5 Interpretation of LEED Patterns.- 3.5.1 Patterns with a Bravais Array of Spots.- 3.5.2 Patterns with Multiple Bravais Arrays of Spots — Domains.- 3.5.3 Patterns Exhibiting Extinctions Due to Glide-Plane Symmetry.- 3.5.4 Rationally Related Lattices and Coincidence Lattices.- 3.5.5 An Instructive Example of Pattern Interpretation.- 3.5.6 Incommensurate Lattices.- 3.5.7 Split Spots.- 3.5.8 An Example: Compact Structures vs. Antiphase Domain Structures of Adsorbed Carbon Monoxide Overlayers.- 3.5.9 Patterns with Multiple Specular Spots.- 3.5.10 Laser Simulation of LEED Patterns.- 4. Kinematic LEED Theory and Its Limitations.- 4.1 Definition of Kinematic Theory.- 4.1.1 Atomic Scattering Factor.- 4.1.2 Elastic Scattering.- 4.1.3 Amplitude of Diffraction.- 4.1.4 Surface Sensitivity.- 4.1.5 From Amplitudes to Intensities of Diffraction.- 4.2 The Kinematic Structure Factor for Ordered Surfaces.- 4.2.1 Two-Dimensional Bragg Conditions.- 4.2.2 General Derivation of Two-Dimensional Bragg Conditions in LEED from the Schrödinger Equation.- 4.2.3 Plane Waves, Beams, and the LEED Pattern.- 4.2.4 I-V, I-?, I-?, and Other Collections of Data.- 4.2.5 Kinematic Diffraction by Bravais Lattices of Atoms.- 4.2.6 The Case of Non-Bravais Lattices.- 4.2.7 Surface Structures Deviating from the Bulk Structure.- 4.2.8 Surfaces with Superlattices.- 4.2.9 Modulated Structures.- 4.2.10 The Simple Effect of Multiple Scattering on LEED Patterns.- 4.2.11 The Ewald Sphere.- 4.2.12 Further Applications of the Kinematic Theory of LEED.- 4.3 The Scattering Processes in LEED.- 4.3.1 Inelastic Scattering Processes.- 4.3.2 Modeling the Effect of the Mean Free Path.- 4.3.3 Spin Effects.- 4.4 The Elastic Scattering Potential.- 4.4.1 Atomic Potentials.- 4.4.2 The Muffin-Tin Constant.- 4.4.3 Potential Steps.- 4.5 Atomic Scattering.- 4.5.1 Spherical-Wave Scattering.- 4.5.2 Plane Wave Scattering.- 4.5.3 Phase Shifts.- 4.5.4 Atoms as Point Scatterers.- 4.6 The Inner Potential and the Muffin-Tin Constant.- 4.7 Temperature Effects.- 4.7.1 The Debye-Waller Factor.- 4.8 From Kinematic to Dynamical LEED.- 4.8.1 Clean Crystals and Bragg Reflections in One Dimension.- 4.8.2 Three-Dimensional Effects.- 4.8.3 Overlayer Effects.- 5. Dynamical LEED Theory.- 5.1 Multiple Scattering.- 5.2 Diffraction in Crystalline Lattices.- 5.2.1 Expansion in Spherical Waves.- 5.2.2 Expansion in Plane Waves.- 5.2.3 Expansion in Bloch Waves.- 5.2.4 Forward vs. Backward Scattering.- 5.3 Multiple Scattering in the Spherical-Wave Representation — Self-Consistent Formalism.- 5.3.1 Scattering by Two Atoms.- 5.3.2 Scattering by N Atoms.- 5.3.3 One Periodic Plane of Atoms.- 5.3.4 Several Periodic Planes of Atoms.- 5.3.5 Change to Plane-Wave Amplitudes.- 5.3.6 Layer Diffraction Matrices for Plane Waves.- 5.3.7 One-Center Expansion.- 5.4 Perturbation Expansion of Multiple Scattering in the Spherical-Wave Representation: Reverse-Scattering Perturbation (RSP) Method.- 5.4.1 The Principle of RSP.- 5.4.2 The Formalism of RSP.- 5.4.3 The Use of RSP.- 5.5 Diffraction by a Stack of Layers: Transfer-Matrix and Bloch-Wave Method.- 5.5.1 The Bloch Condition.- 5.5.2 The Bloch Functions.- 5.5.3 The Transfer Matrix.- 5.5.4 Wave Matching at the Surface.- 5.5.5 Small Layer Spacings.- 5.5.6 Relation to Band Structure.- 5.6 Diffraction by a Stack of Layers: Layer-Stacking and Layer-Doubling Method.- 5.6.1 The Case of Two Layers.- 5.6.2 The Case of Many Layers.- 5.7 Diffraction by a Stack of Layers: Renormalized-Forward-Scattering (RFS) Perturbation Method.- 5.7.1 The Principle of RFS.- 5.7.2 The Formalism of RFS.- 5.8 Efficiency of Computation and the Combined-Space Method.- 5.9 Superlattices and Domains.- 5.9.1 Diffraction and Superlattices.- 5.9.2 Domains.- 5.10 Symmetries.- 5.10.1 Types of Symmetry.- 5.10.2 The Formalism of Symmetrization.- 5.10.3 Glide-Plane Symmetry.- 5.11 Thermal Effects.- 5.11.1 Temperature-Dependent Phase Shifts.- 5.11.2 Illustrations of Multiple-Scattering Effects in Temperature-Dependent LEED.- 5.12 Potential Steps, Surface States, Surface Resonances and LEED Fine Structure.- 5.12.1 Potential Steps.- 5.12.2 Surface States, Surface Resonances and LEED Fine Structure.- 5.13 Relativistic and Spin-Dependent Effects in LEED.- 5.14 Some Other Theoretical Techniques.- 5.14.1 Bootstrapping.- 5.14.2 The Chain Method.- 5.14.3 Multiple Scattering in Disordered Systems.- 5.14.4 Pseudopotentials.- 5.14.5 A Semiclassical Theory of LEED.- 5.15 Outstanding Theoretical Problems in LEED.- 5.16 Application of LEED Theory to Other Electron Spectroscopies.- 5.17 Computer Programs.- 6. Methods of Surface Crystallography by LEED.- 6.1 The Kinematic Approach to Surface Crystallography.- 6.1.1 Kinematic Simulation of Intensity Data.- 6.1.2 Layer Spacings from Sequences of Bragg Peaks.- 6.2 Averaging Methods.- 6.2.1 Constant-Momentum-Transfer Averaging (CMTA).- 6.2.2 CMTA with Azimuthal Averaging at Constant Energy.- 6.3 Fourier-Transform Methods.- 6.3.1 The Patterson Function.- 6.3.2 The Convolution-Transform Method.- 6.3.3 The Transform-Deconvolution Method.- 6.3.4 Fourier Transform of Intensity Beats from Overlayer and Substrate.- 6.4 The Dynamical Approach to Surface Crystallography.- 6.4.1 Dynamical Effects on Intensity Data.- 6.4.2 Information Content of Measured Data.- 6.4.3 Extraction of Structural Information from Dynamical LEED Intensities.- 6.5 Reliability Factors (R-Factors).- 6.5.1 Various R-Factors.- 6.5.2 Reliability of Reliability Factors.- 6.5.3 Dealing with Different Experiments and Different Beams.- 6.5.4 Noise and Smoothing.- 6.5.5 The Use of R-Factors.- 6.6 Accuracy and Precision of Structural Determination.- 7. Results of Structural Analyses by LEED.- 7.1 Clean Unreconstructed Surfaces.- 7.1.1 The Rh(111) Surface.- 7.1.2 Multilayer Relaxations.- 7.2 Reconstructed Surfaces.- 7.2.1 The Ir(110)-(1 × 2) Reconstructed Surface.- 7.2.2 The Si(100)-(2 × 1) Reconstructed Surface.- 7.2.3 The GaAs(110)-(1 × 1) Reconstructed Surface.- 7.3 Adsorbed Atomic Layers.- 7.3.1 The Ir(110)-(2 × 2)-2S Atomic Overlayer.- 7.3.2 The Ir(110)-c(2 × 2)-O and Ir(111)-(2 × 2)-O Atomic Overlayers.- 7.3.3 The Ti(0001)-(1 × 1)-N Atomic Underlayer.- 7.4 Adsorbed Molecular Layers.- 7.4.1 The Ni(100)-c(2 × 2)-CO Molecular Overlayer.- 7.4.2 The Pd(100)-($$2\sqrt 2 \times \sqrt 2$$)R45°-2CO Molecular Overlayer.- 7.4.3 Molecular Overlayers of C2H2 and C2H4 on Pt(111) and Rh(111).- 8. Two Dimensional Order-Disorder Phase Transitions.- 8.1 Introduction to Order-Disorder Phase Transitions at Surfaces...- 8.1.1 Chemisorption and Ordering Principles.- 8.1.2 Universality, Nonuniversality, Critical Exponents and Scaling.- 8.1.3 Applicability to Actual Surfaces.- 8.2 The Interaction of Hydrogen with the (111) Surface of Nickel.- 8.2.1 An Optimum Case.- 8.2.2 Experimental Results for Hydrogen Chemisorption on Ni(111).- 8.2.3 Parameters for LEED Analysis.- 8.2.4 The Geometry of Chemisorbed Hydrogen on Ni(111).- 8.2.5 Thermal Motion and Disorder in the Hydrogen Overlayer.- 8.2.6 The Order-Disorder Phase Transition and Adatom-Adatom Interaction Energies.- 8.2.7 A Renormalization-Group Theory Description of the Order-Disorder Transition of Hydrogen on Ni(111).- 8.2.8 A Cluster-Variational Description of the Order-Disorder Transition of Hydrogen on Ni(111).- 8.2.9 An Atomic Band Structure Description of Hydrogen on Ni(111).- 8.3 The Interaction of Hydrogen with the (100) Surface of Palladium.- 8.3.1 Significance of the H/Pd(100) System.- 8.3.2 An Experimental Characterization of Hydrogen on Pd (100).- 8.3.3 The Order-Disorder Phase Transition.- 8.3.4 The Connection Between the Ising Model and the Lattice-Gas Model.- 8.3.5 The Lattice-Gas Model with First- and Second-Neighbor Interactions.- 8.3.6 Effects of Three-Body Interactions.- 8.3.7 Effects of Third-Neighbor Interactions.- 8.3.8 Comparison Between Experiment and Theory for Hydrogen on Pd (100).- 8.4 The Interaction of Hydrogen with the (110) Surface of Iron.- 8.4.1 Significance of the H/Fe (110) System.- 8.4.2 An Experimental Characterization of Hydrogen on Fe(110).- 8.4.3 LEED Observations and Order-Disorder Phase Transitions of Hydrogen on Fe(110).- 8.4.4 Theoretical Predictions: A Lattice Gas on a Centered-Rectangular Lattice.- 8.4.5 Comparison Between Experiment and Theory for Hydrogen on Fe(110).- 9. Chemical Reactions at Surfaces and LEED.- 9.1 Monitoring Surface Reactions by LEED.- 9.2 The Adsorption of Oxygen on Rh(111) at 335 K.- 9.2.1 First-Order Langmuir Adsorption.- 9.2.2 The Structure of Oxygen on Rh(111).- 9.2.3 LEED Intensity Proportional to Oxygen Coverage.- 9.3 The Reaction Between Hydrogen and Ordered Oxygen on Rh(111).- 9.3.1 Reaction Threshold Temperature.- 9.3.2 First-Order Catalytic Reaction.- 9.3.3 Model for the Catalytic Reaction.- 9.3.4 Activation Energies and Preexponential Factors.- 9.3.5 Experimental Determination.- 9.4 The Reaction Between Hydrogen and Both Ordered and Disordered Oxygen on Rh(111).- 9.4.1 Order-Dependent Kinetics.- 9.4.2 Relative Amounts of Ordered and Disordered Oxygen.- 10. Island Formation of Adspecies and LEED.- 10.1 The Nature of Islands on Surfaces.- 10.2 LEED Beam Profiles for Arrays of Ordered Islands.- 10.2.1 Distributions of Islands.- 10.2.2 One-Dimensional Overlayers.- 10.2.3 Two-Dimensional Overlayers.- 10.2.4 Dependence on Surface Coverage.- 10.2.5 Summary of Theoretical Results for Beam Profiles.- 10.3 Island Formation in a Real System: CO on Ru(0001).- 10.3.1 Conditions of Island Formation.- 10.3.2 Experimental Results.- 10.3.3 Analysis and Discussion of Results.- 10.3.3a The Step-Limited Model of Island Formation.- 10.3.3b Dissolution of Islands.- 10.3.4 Summary of Island Formation Properties for CO/Ru (0001).- 11. The Future of LEED.- 11.1 Experimental Outlook.- 11.1.1 Improvements in Experimental Techniques.- 11.1.2 New Experimental Directions.- 11.2 Theoretical Outlook.- 11.2.1 Survival of the Kinematic Theory.- 11.2.2 Partial Multiple Scattering.- 11.2.3 Developments in the Dynamical Theory.- 11.2.3a Coherent Kinematic Summation of Amplitudes over Different Local Configurations.- 11.2.3b Reduced Unit Cell.- 11.2.3c Asymptotic Regime.- 11.2.4 New Directions.- 11.3 Progress in Structural Determination.- 11.3.1 Degree of Completeness of Structural Determinations.- 11.3.2 R-Factors and Structural Search Techniques.- 11.3.2a Projection Improvement.- 11.3.2b Functional Fitting of R-Factors.- 11.3.2c Steepest Descent.- 11.3.2d Least Squares.- 11.4 LEED vs. Other Surface-Sensitive Techniques.- 11.4.1 Individual Techniques.- 11.4.2 Comparisons Between Surface-Sensitive Techniques.- 11.4.3 Complementary and Competitive Techniques.- 12. Reference List and Table for Surface Structures.- Appendix A: Acronyms of Techniques Related to Surface Science.- Appendix B: A Computer Program to Determine the Angle of Incidence in LEED.- List of Major Symbols.- References.
Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)