Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You'll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics.
This pocket reference includes sections that cover:
- Classification, using the Titanic dataset
- Cleaning data and dealing with missing data
- Exploratory data analysis
- Common preprocessing steps using sample data
- Selecting features useful to the model
- Model selection
- Metrics and classification evaluation
- Regression examples using k-nearest neighbor, decision trees, boosting, and more
- Metrics for regression evaluation
- Clustering
- Dimensionality reduction
- Scikit-learn pipelines
Ideal for programmers, data scientists, and AI engineers, this book includes an overview of the machine learning process and walks you through classification with structured data. You'll also learn methods for clustering, predicting a continuous value (regression), and reducing dimensionality, among other topics.
This pocket reference includes sections that cover:
- Classification, using the Titanic dataset
- Cleaning data and dealing with missing data
- Exploratory data analysis
- Common preprocessing steps using sample data
- Selecting features useful to the model
- Model selection
- Metrics and classification evaluation
- Regression examples using k-nearest neighbor, decision trees, boosting, and more
- Metrics for regression evaluation
- Clustering
- Dimensionality reduction
- Scikit-learn pipelines

Machine Learning Pocket Reference: Working with Structured Data in Python
318
Machine Learning Pocket Reference: Working with Structured Data in Python
318Paperback(Revised)
Product Details
ISBN-13: | 9781492047544 |
---|---|
Publisher: | O'Reilly Media, Incorporated |
Publication date: | 09/17/2019 |
Edition description: | Revised |
Pages: | 318 |
Product dimensions: | 4.20(w) x 6.90(h) x 0.70(d) |