Machine Learning: From Theory to Applications: Cooperative Research at Siemens and MIT / Edition 1

Paperback (Print)
Buy New
Buy New from BN.com
$79.20
Used and New from Other Sellers
Used and New from Other Sellers
from $7.69
Usually ships in 1-2 business days
(Save 92%)
Other sellers (Paperback)
  • All (7) from $7.69   
  • New (4) from $70.76   
  • Used (3) from $7.69   

Overview

This volume includes some of the key research papers in the area of machine learning produced at MIT and Siemens during a three-year joint research effort. It includes papers on many different styles of machine learning, organized into three parts.
Part I, theory, includes three papers on theoretical aspects of machine learning. The first two use the theory of computational complexity to derive some fundamental limits on what isefficiently learnable. The third provides an efficient algorithm for identifying finite automata.
Part II, artificial intelligence and symbolic learning methods, includes five papers giving an overview of the state of the art and future developments in the field of machine learning, a subfield of artificial intelligence dealing with automated knowledge acquisition and knowledge revision.
Part III, neural and collective computation, includes five papers sampling the theoretical diversity and trends in the vigorous new research field of neural networks: massively parallel symbolic induction, task decomposition through competition, phoneme discrimination, behavior-based learning, and self-repairing neural networks.

Read More Show Less

Product Details

  • ISBN-13: 9783540564836
  • Publisher: Springer Berlin Heidelberg
  • Publication date: 5/7/1993
  • Series: Lecture Notes in Computer Science Series , #661
  • Edition description: 1993
  • Edition number: 1
  • Pages: 276
  • Product dimensions: 9.21 (w) x 6.14 (h) x 0.61 (d)

Table of Contents

Strategic directions in machine learning.- Training a 3-node neural network is NP-complete.- Cryptographic limitations on learning Boolean formulae and finite automata.- Inference of finite automata using homing sequences.- Adaptive search by learning from incomplete explanations of failures.- Learning of rules for fault diagnosis in power supply networks.- Cross references are features.- The schema mechanism.- L-ATMS: A tight integration of EBL and the ATMS.- Massively parallel symbolic induction of protein structure/function relationships.- Task decomposition through competition in a modular connectionist architecture: The what and where vision tasks.- Phoneme discrimination using connectionist networks.- Behavior-based learning to control IR oven heating: Preliminary investigations.- Trellis codes, receptive fields, and fault tolerant, self-repairing neural networks.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)