Macromolecules Containing Metal and Metal-Like Elements, Photophysics and Photochemistry of Metal-Containing Polymers / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
$210.91
Used and New from Other Sellers
Used and New from Other Sellers
from $185.23
Usually ships in 1-2 business days
(Save 20%)
Other sellers (Hardcover)
  • All (7) from $185.23   
  • New (5) from $185.23   
  • Used (2) from $220.12   

Overview

Metal- and metalloid-containing macromolecules are defined as large molecules (i.e., polymers, DNA, proteins) that contain a metal or metalloid group affiliated with the molecule. This volume describes what is possible with metal-containing polymers where the metal is an essential ingredient in obtaining desired optical and electronic properties. Covering applications in nonlinear optical materials, solar cells, light-emitting diodes, photovoltaic cells, field-effect transistors, chemosensing devices, and biosensing devices, this indispensible guide focuses on the photochemistry and photophysics of metal-containing polymers, with chapters by leading contributors to the core advances in this field.

Read More Show Less

Product Details

Table of Contents

Preface.

Series Preface.

1. Introduction to Photophysics and Photochemistry (Shawkat M. Aly, Charles E. Carraher Jr., and Pierre D. Harvey).

I. General.

II. Photophysics and Photochemistry.

III. Light Absorption.

IV. Luminescence.

V. Emission Lifetime.

VI. Ground and Excited State Molecular Interactions.

A. Energy and Electron Transfer (Excited State Interactions and Reactions).

B. Energy Transfer.

C. Electron Transfer.

VII. Nonlinear Optical Behavior.

VIII. Photoconductive and Photonic Polymers.

IX. Photosynthesis.

A. Purple Photosynthetic Bacteria.

B. Green Sulfur Bacteria.

X. Organometallic Polymers and Synthetic Photosynthesis Systems.

XI. Summary.

XII. References Additional Readings.

XIII. References.

2. Luminescent Organometallic Coordination Polymers Built on Isocyanide Bridging Ligands (Pierre D. Harvey, Sébastien Clément, Michael Knorr, and Jerome Husson).

I. Introduction.

II. Luminescent Organometallic Polynuclear Systems and Coordination Polymers Containing a Terminal Isocyanide Ligand.

III. Luminescent Polymeric Systems Containing an Isocyanide Ligand Assembled via M...M Interactions.

IV. Luminescent Organometallic Polymetallic Systems and Coordination Polymers Containing Bridging Isocyanides.

V. Conclusion.

VI. Acknowledgments.

VII. References.

3. Luminescent Oligomeric and Polymeric Copper Coordination Compounds Assembled by Thioether Ligands (Michael Knorr and Fabrice Guyon).

I. Introduction.

II. Background Informations.

III. Luminescent Copper Polymers Assembled by Thioether Ligands.

A. Copper Polymers Assembled by Monothioether Ligands RSR.

B. Copper Polymers Assembled by Aromatic Dithioether Ligands.

C. Copper Polymers Assembled by Aliphatic Dithioether and Polythioether Ligands.

D. Copper Polymers Assembled by Dithioether and Polythioether Ligands Bearing Heteroelements in the Spacer Unit.

IV. Conclusion.

V. Acknowledgments.

VI. References.

4. Applications of Metal Containing Polymers in Organic Solar Cells (Chris S. K. Mak and Wai Kin Chan).

I. Introduction.

II. Types of Organic Solar Cells.

A. Dye-Sensitized Solar Cells.

B. Organic Thin Film Solar cells.

III. Solar Cell Characterizations.

IV. Metal Containing Polymers in Solar Cells.

A. Dye-Sensitized Solar Cells.

B. Organic Thin Film Solar Cells.

V. Summary.

VI. Acknowledgments.

VII. References.

5. Functional Silole-Containing Polymers (Junwu Chen, Yong Cao, and Ben Zhong Tang).

I. Introduction.

II. Electronic Transition and Band Gap.

III. Light Emission.

A. Photoluminescence.

B. Electroluminescence.

IV. Bulk-Heterojuction Photovoltaic Cells.

V. Field Effect Transistors.

VI. Aggregation-Induced Emission.

VII. Chemosensors.

VIII. Conductivity.

IX. Optical Limiting.

X. Summary.

XI. Acknowledgments.

XII. References.

6. Photophysics and Photochemistry of Polysilanes for Electronic Applications (Starr Dostie, Cetin Aktik, and Mihai Scarlete).

I. Introduction.

II. Synthesis of Electronic-Grade Polysilanes.

III. Band Structure.

IV. Photophysics.

A. Influence of the Backbone Structure.

B. Side Groups.

C. Nanostructured Polysilanes.

D. PL Quenching by Doping.

E. Energy Transfer.

F. Electroluminescence.

G. Cathodoluminescence.

H. Interaction with Photoelectrons.

V. Photochemistry.

A. Photo-Oxidation.

VI. Polysilane Thin Films for Electronic Devices.

A. LED.

B. Photoconductors.

C. Photovoltaics.

D. Lithography.

E. Electron Beam.

VII. Polysilane Films for Optical Devices.

A. NLO.

VIII. Summary.

IX. References.

7. Polymers with Metal-Metal Bonds as Models in Mechanistic Studies of Polymer Photodegradation (David R. Tyler, Bevin Daglen, and Ginger Shultz).

I. Introduction.

II. Experimental Strategies.

III. Synthesis of Polymers with Metal-Metal Bonds along their Backbones.

A. Step-Growth Polymers.

B. ADMET Polymerization.

C. Chain-Growth Polymers.

IV. Photochemical Reactions of the Polymers in Solution.

V. Photochemistry in the Solid State.

VI. Factors Controlling the Rate of Polymer Photochemical Degradation in the Solid State.

A. Temperature Effects.

B. Interpreting the Kinetics of Polymer Degradation in the Solid State.

C. Photodegradation Rate Dependence on Polymer Curing Time.

D. The Effects of Stress on Polymer Degradation.

VII. Kinetics of Polymer Formation.

VIII. Concluding Remarks on the Importance of Radical-Radical Recombination on the Efficiency of Polymer Photochemical Degradation.

IX. Acknowledgments.

X. References.

8. Optical Properties and Photophysics of Platinum-Containing Poly (aryleneethynylene)s (Wai-Yeung Wong).

I. Introduction.

II. Synthetic Methods and Materials Characterization.

III. Optical and Photophysical Properties.

A. Energy Gap Law for Triplet States.

B. Phosphorescence Color Tuning of Metallopolyynes.

C. Roles of Metallopolyynes in Optoelectronic and Photonic Devices.

IV. Summary.

V. Acknowledgments.

VI. References.

9. Luminescence in Polymetallic Gold-Heteronuclear Derivatives (Antonio Laguna and Jose M. López-de-Luzuriaga).

I. Introduction and Background.

II. Luminescent Gold-Silver Derivatives.

A. Supramolecular Gold-Silver Complexes with Bidentate Ligands.

B. Supramolecular Gold-Silver Complexes with Tridentate Ligands.

C. Supramolecular Gold-Silver Complexes Built with Metallic Cationic and Anionic Counterparts.

III. Luminescent Gold-Copper Derivatives.

IV. Luminescent Gold-Thallium Derivatives.

A. Supramolecular Gold-Thallium Complexes with Bidentate Ligands.

B. Supramolecular Gold-Thallium Complexes through Acid-Base Reactions.

V. Luminescent Gold-Lead Derivatives.

VI. Luminescent Gold-Platinum Derivatives.

VII. Luminescent Gold-Mercury Derivatives.

VIII. Conclusion.

IX. References.

10. Functional Self-Assembled Zinc(II) Coordination Polymers (Chi-Chung Kwok and Chi-Ming Che).

I. Introduction.

II. Zinc(II) Terpyridine Polymers.

III. Zinc(II) Schiff Base Polymer.

IV. Summary.

V. Acknowledgment.

VI. References.

11. Redox and Photo Functions of Metal Complex Oligomer and Polymer Wires on the Electrode (Mariko Miyachi and Hiroshi Nishihara).

I. Introduction.

II. Bottom-Up Fabrication of Redox-Conducting Metal Complex Oligomers on an Electrode Surface and Their Redox Conduction Behavior.

A. Bottom-Up Fabrication of Metal Complex Oligomer and Polymer Wires.

B. Electron Transport Behavior of the Molecular Wires on the Electrode.

III. Photoelectric Conversion System Using Porphyrin and Redox-Conducting Metal Complex Wires.

A. Bottom-Up Fabrication of the Porphyrin-Terminated Redox-Conducting Metal Complex Film on ITO.

B. Photoelectrochemical Properties of the Porphyrin-Terminated Redox-Conducting Metal Complex Film on ITO.

IV. Biophotosensor and Biophotoelectrode Composed of Cyanobacterial Photosystem I and Molecular Wires.

A. Biophotosensor Composed of Cyanobacterial Photosystem I, Molecular Wire, Gold Nanoparticle, and Transistor.

B. Biophotoelectrode Composed of Cyanobacterial Photosystem I and Molecular Wires.

V. Conclusion.

VI. References.

Index.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)