Mahout in Action

Overview

Summary

Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes a free audio- and video-enhanced ebook.

About the Technology

A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source ...

See more details below
Paperback
$32.75
BN.com price
(Save 27%)$44.99 List Price

Pick Up In Store

Reserve and pick up in 60 minutes at your local store

Other sellers (Paperback)
  • All (27) from $10.64   
  • New (17) from $25.16   
  • Used (10) from $10.64   
Sending request ...

Overview

Summary

Mahout in Action is a hands-on introduction to machine learning with Apache Mahout. Following real-world examples, the book presents practical use cases and then illustrates how Mahout can be applied to solve them. Includes a free audio- and video-enhanced ebook.

About the Technology

A computer system that learns and adapts as it collects data can be really powerful. Mahout, Apache's open source machine learning project, captures the core algorithms of recommendation systems, classification, and clustering in ready-to-use, scalable libraries. With Mahout, you can immediately apply to your own projects the machine learning techniques that drive Amazon, Netflix, and others.

About this Book

This book covers machine learning using Apache Mahout. Based on experience with real-world applications, it introduces practical use cases and illustrates how Mahout can be applied to solve them. It places particular focus on issues of scalability and how to apply these techniques against large data sets using the Apache Hadoop framework.

This book is written for developers familiar with Java — no prior experience with Mahout is assumed.

Owners of a Manning pBook purchased anywhere in the world can download a free eBook from manning.com at any time. They can do so multiple times and in any or all formats available (PDF, ePub or Kindle). To do so, customers must register their printed copy on Manning's site by creating a user account and then following instructions printed on the pBook registration insert at the front of the book.

What's Inside

  • Use group data to make individual recommendations
  • Find logical clusters within your data
  • Filter and refine with on-the-fly classification
  • Free audio and video extras
Table of Contents
  1. Meet Apache Mahout

  2. PART 1 RECOMMENDATIONS
  3. Introducing recommenders
  4. Representing recommender data
  5. Making recommendations
  6. Taking recommenders to production
  7. Distributing recommendation computations

  8. PART 2 CLUSTERING
  9. Introduction to clustering
  10. Representing data
  11. Clustering algorithms in Mahout
  12. Evaluating and improving clustering quality
  13. Taking clustering to production
  14. Real-world applications of clustering

  15. PART 3 CLASSIFICATION
  16. Introduction to classification
  17. Training a classifier
  18. Evaluating and tuning a classifier
  19. Deploying a classifier
  20. Case study: Shop It To Me
Read More Show Less

Product Details

  • ISBN-13: 9781935182689
  • Publisher: Manning Publications Company
  • Publication date: 10/28/2011
  • Edition number: 1
  • Pages: 416
  • Product dimensions: 7.40 (w) x 9.30 (h) x 1.10 (d)

Meet the Author

Sean Owen has been a practicing software engineer for 9 years, most recently at Google, where he helped build and launch Mobile Web search. He joined Apache's Mahout machine learning project in 2008 as a primary committer and works as a Mahout consultant.

Robin Anil joined Apache's Mahout project as a Google Summer of Code student in 2008 and contributed to the Classifier and Frequent Pattern Mining packages with algorithms that run on the Hadoop Map/Reduce platform. Since 2009, he has been a committer at Mahout and works as a full-time Software Engineer at Google.

Ted Dunning is Chief Application Architect at MapR Technologies and committer and PMC member for the Apache Mahout project. He contributing to the Mahout clustering, classification and matrix decomposition algorithms. He was the chief architect behind the MusicMatch (now Yahoo Music) and Veoh recommendation systems, and built fraud detection systems for ID Analytics.

Ellen Friedman is an experienced writer with a doctorate in biochemistry. In addition to a research career, she has written on a wide range of scientific and technical topics including molecular biology, medicine and earth science.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)