Managing Mathematical Projects - with Success! / Edition 1

Paperback (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $5.91
Usually ships in 1-2 business days
(Save 83%)
Other sellers (Paperback)
  • All (9) from $5.91   
  • New (5) from $26.35   
  • Used (4) from $5.91   


Based on over twenty years' experience as supervisor and external examiner of project work in mathematics, Phil Dyke shows you how to get the best out of degree projects and case studies in mathematics. There are guidelines on setting up a project - be it individual or group - advice on time management, and tips on how to get the most out of verbal presentations and how to succeed in peer assessment. Pointers as to what the assessor will be looking for and advice on the all-important project write-up also provide an essential head start. This practical guide will be essential reading for students in the second or final year of a mathematics degree - or other courses with a high mathematical content - and a useful resource for lecturers and project advisors looking for ideas on how to devise, assess and manage projects.

Read More Show Less

Editorial Reviews

From the Publisher
From the reviews:

"More than 20 years of the author’s experience in supervising and assessing mathematical projects have resulted in this book, the title of which can hardly be more eloquent. … The features of individual projects, group projects and case studies are carefully described … . It is a sheer joy reading it and appreciating the authors’ refined style and humor. From the viewpoint of students, supervisors, as well as of assessors, this book must be unanimously marked as excellent." (EMS Newsletter, September, 2005)

"The text does discuss fully the supervision and assessment of both pure and applied mathematics projects, and, for me personally, the level of detail on this aspect has been the most useful feature of the book. … Academic staff will certainly find this book relevant. For departments considering introducing final year projects based on mathematics, Managing mathematical projects gives invaluable guidelines. For departments already running such projects, the book is both useful and stimulating." (David Hood, The Mathematical Gazette, Vol. 91 (520), 2007)

Read More Show Less

Product Details

  • ISBN-13: 9781852337360
  • Publisher: Springer London
  • Publication date: 12/4/2003
  • Series: Springer Undergraduate Mathematics Series
  • Edition description: 2004
  • Edition number: 1
  • Pages: 266
  • Product dimensions: 0.60 (w) x 7.00 (h) x 10.00 (d)

Table of Contents

1. Introduction and Organisation
1.1 Individual Projects
1.2 Group Projects
1.3 Case Studies
2. Assessment
2.1 Introduction
2.2 Interim Reports
2.3 Verbal Presentations
2.4 Final Report
2.5 Moderating
2.6 Assessment of Case Studies
3. Individual Projects
3.1 Introduction
3.2 Selecting a Project
3.3 Report Writing
3.4 Non-Euclidean Geometry
3.4.1 Scope
3.4.2 Project Details
3.5 Boomerangs
3.5.1 Scope
3.5.2 Project Details
3.6 Hurricane Dynamics
3.6.1 Scope
3.6.2 Project Details
3.7 Hypergeometric Functions
3.7.1 Scope
3.7.2 Project Details
3.8 Summary
3.9 Project Examples
4. Group Projects
4.1 Introduction
4.2 Setting up Group Projects
4.2.1 Peer Assessment
4.2.2 Dividing into Groups
4.3 Estuarial Diffusion
4.4 Graphs and Networks
4.5 Fourier Transforms
4.6 Orbital Motion
4.7 Conclusion
4.8 Further Suggestions
5. Case Studies
5.1 Introduction
5.2 Ocean Surface Dynamics
5.3 Non-linear Oscillations
5.4 Traffic Flow
5.5 Contour Integral Solutions to ODEs
5.6 Optimisation
5.7 Euler and Series
5.8 Summary
5.9 Exercises
A. Project Example 1: Topics in Galois Theory
A.1 Galois' Approach
A.1.1 Preparation
A.1.2 The Galois Resolvent
A.1.3 The Galois Group
A.1.4 Soluble Equations and Soluble Groups
A.2 The Modern Approach
A.2.1 Field Extension
A.2.2 The Galois Group
A.2.3 Applying Galois Theory
A.3 Soluble Groups
A.3.1 Normal Subgroup Series
A.3.2 Normal Subgroups
A.3.3 Simple Groups
A.3.4 p-Groups
A.4 Geometrical Constructions
A.4.1 Constructible Points
A.4.2 Impossibility Proofs
A.4.3 Performing Algebraic Operations by Construction
A.4.4 Regular n-gons
B. Project Example 2: Algebraic Curves
B.1 Basic De.nitions and Properties
B.1.1 Complex Algebraic Curves and Real Algebraic CurvesB.1.2 Projective Spaces
B.1.3 and Projective Curves
B.1.4 Singular Points
B.2 Intersection of Two Curves and Points of Inflection
B.2.1 Bezout's Theorem
B.2.2 Points of Inflection on a Curve
B.3 Conics and Cubics
B.3.1 Conics
B.3.2 Cubics
B.3.3 Additive Group Structure on a Cubic
B.4 Complex Analysis
B.4.1 Holomorphic Functions and Entire Functions
B.4.2 Closed Curve Theorem and Line Integrals
B.4.3 Liouville's Theorem and Fundamental Theorem of Algebra
B.4.4 Properties of Holomorphic Functions
B.4.5 General Cauchy Closed Curve Theorem
B.4.6 Isolated Singularities and Removable Singularities
B.4.7 Laurent Expansions
B.4.8 Residue Theorem
B.4.9 Conformal Mapping
B.5 Topology and Riemann Surfaces
B.5.1 Topology of Complex Algebraic Curves
B.5.2 Riemann Surfaces
B.5.3 Degeneration of a Cubic
B.5.4 Singularities and Riemann Surfaces
B.6 Further Topics
B.6.1 The Weierstrass Function
B.6.2 Differential Forms on a Riemann Surface
B.6.3 Abel's Theorem
C. Project Example 3: Water Waves on a Sloping Beach
C.1 Abstract
C.2 Introduction
C.3 Surface Waves
C.3.1 The Current
C.3.2 The Boundary Conditions
C.3.3 A Separable Solution of Laplace's Equation
C.4 [No Title]
C.4.1 The Velocity of the Waves
C.4.2 The Group Velocity of the Waves
C.4.3 The Motion of the Particles
C.4.4 Breaking Waves in Shallow Water
C.5 [No Title]
C.5.1 Plane Waves
C.5.2 Wave Rays
C.5.3 The Waves Approaching a Beach
C.5.4 Wave rays in shallow water
C.6 [No Title]
C.6.1 Conclusion and Discussion

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)