Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques

Transformer-based language models have dominated natural language processing (NLP) studies and have now become a new paradigm. With this book, you'll learn how to build various transformer-based NLP applications using the Python Transformers library.
The book gives you an introduction to Transformers by showing you how to write your first hello-world program. You'll then learn how a tokenizer works and how to train your own tokenizer. As you advance, you'll explore the architecture of autoencoding models, such as BERT, and autoregressive models, such as GPT. You'll see how to train and fine-tune models for a variety of natural language understanding (NLU) and natural language generation (NLG) problems, including text classification, token classification, and text representation. This book also helps you to learn efficient models for challenging problems, such as long-context NLP tasks with limited computational capacity. You'll also work with multilingual and cross-lingual problems, optimize models by monitoring their performance, and discover how to deconstruct these models for interpretability and explainability. Finally, you'll be able to deploy your transformer models in a production environment.
By the end of this NLP book, you'll have learned how to use Transformers to solve advanced NLP problems using advanced models.

1139937579
Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques

Transformer-based language models have dominated natural language processing (NLP) studies and have now become a new paradigm. With this book, you'll learn how to build various transformer-based NLP applications using the Python Transformers library.
The book gives you an introduction to Transformers by showing you how to write your first hello-world program. You'll then learn how a tokenizer works and how to train your own tokenizer. As you advance, you'll explore the architecture of autoencoding models, such as BERT, and autoregressive models, such as GPT. You'll see how to train and fine-tune models for a variety of natural language understanding (NLU) and natural language generation (NLG) problems, including text classification, token classification, and text representation. This book also helps you to learn efficient models for challenging problems, such as long-context NLP tasks with limited computational capacity. You'll also work with multilingual and cross-lingual problems, optimize models by monitoring their performance, and discover how to deconstruct these models for interpretability and explainability. Finally, you'll be able to deploy your transformer models in a production environment.
By the end of this NLP book, you'll have learned how to use Transformers to solve advanced NLP problems using advanced models.

43.99 In Stock
Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques

Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques

Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques

Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques

eBook

$43.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Transformer-based language models have dominated natural language processing (NLP) studies and have now become a new paradigm. With this book, you'll learn how to build various transformer-based NLP applications using the Python Transformers library.
The book gives you an introduction to Transformers by showing you how to write your first hello-world program. You'll then learn how a tokenizer works and how to train your own tokenizer. As you advance, you'll explore the architecture of autoencoding models, such as BERT, and autoregressive models, such as GPT. You'll see how to train and fine-tune models for a variety of natural language understanding (NLU) and natural language generation (NLG) problems, including text classification, token classification, and text representation. This book also helps you to learn efficient models for challenging problems, such as long-context NLP tasks with limited computational capacity. You'll also work with multilingual and cross-lingual problems, optimize models by monitoring their performance, and discover how to deconstruct these models for interpretability and explainability. Finally, you'll be able to deploy your transformer models in a production environment.
By the end of this NLP book, you'll have learned how to use Transformers to solve advanced NLP problems using advanced models.


Product Details

ISBN-13: 9781801078894
Publisher: Packt Publishing
Publication date: 09/15/2021
Sold by: Barnes & Noble
Format: eBook
Pages: 374
File size: 16 MB
Note: This product may take a few minutes to download.

About the Author

Savaş Yıldırım graduated from the Istanbul Technical University Department of Computer Engineering and holds a Ph.D. degree in Natural Language Processing (NLP). Currently, he is an associate professor at the Istanbul Bilgi University, Turkey, and is a visiting researcher at the Ryerson University, Canada. He is a proactive lecturer and researcher with more than 20 years of experience teaching courses on machine learning, deep learning, and NLP. He has significantly contributed to the Turkish NLP community by developing a lot of open source software and resources. He also provides comprehensive consultancy to AI companies on their R&D projects. In his spare time, he writes and directs short films, and enjoys practicing yoga.
Meysam Asgari-Chenaghlu is an AI manager at Carbon Consulting and is also a Ph.D. candidate at the University of Tabriz. He has been a consultant for Turkey's leading telecommunication and banking companies. He has also worked on various projects, including natural language understanding and semantic search.

Table of Contents

Table of Contents
  1. From Bag-of-Words to the Transformers
  2. A Hands-On Introduction to the Subject
  3. Autoencoding Language Models
  4. Autoregressive and Other Language Models
  5. Fine-Tuning Language Models for Text Classification
  6. Fine-Tuning Language Models for Token Classification
  7. Text Representation
  8. Working with Efficient Transformers
  9. Cross-Lingual and Multilingual Language Modeling
  10. Serving Transformer Models
  11. Attention Visualization and Experiment Tracking
From the B&N Reads Blog

Customer Reviews