Mathematical and Numerical Foundations of Turbulence Models and Applications

With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering and computer science.

Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows.

Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics, engineers, physical oceanographers, meteorologists and climatologists.

1137155370
Mathematical and Numerical Foundations of Turbulence Models and Applications

With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering and computer science.

Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows.

Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics, engineers, physical oceanographers, meteorologists and climatologists.

159.0 In Stock
Mathematical and Numerical Foundations of Turbulence Models and Applications

Mathematical and Numerical Foundations of Turbulence Models and Applications

Mathematical and Numerical Foundations of Turbulence Models and Applications

Mathematical and Numerical Foundations of Turbulence Models and Applications

eBook2014 (2014)

$159.00 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering and computer science.

Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows.

Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics, engineers, physical oceanographers, meteorologists and climatologists.


Product Details

ISBN-13: 9781493904556
Publisher: Birkhäuser
Publication date: 06/17/2014
Series: Modeling and Simulation in Science, Engineering and Technology
Sold by: Barnes & Noble
Format: eBook
Pages: 517
File size: 11 MB
Note: This product may take a few minutes to download.

About the Author

The author is a professor at XX University.

Table of Contents

Introduction.- Incompressible Navier-Stokes Equations.- Mathematical Basis of Turbulence Modeling.- The k – ε Model.- Laws of the Turbulence by Similarity Principles.- Steady Navier-Stokes Equations with Wall Laws and Fixed Eddy Viscosities.- Analysis of the Continuous Steady NS-TKE Model.- Evolutionary NS-TKE Model.- Finite Element Approximation of Steady Smagorinsky Model.- Finite Element Approximation of Evolution Smagorinsky Model.- A Projection-based Variational Multi-Scale Model.- Numerical Approximation of NS-TKE Model.- Numerical Experiments.- Appendix A: Tool Box.

From the B&N Reads Blog

Customer Reviews