Mathematical Aspects of Evolving Interfaces: Lectures given at the C.I.M.-C.I.M.E. joint Euro-Summer School held in Madeira Funchal, Portugal, July 3-9, 2000 / Edition 1

Mathematical Aspects of Evolving Interfaces: Lectures given at the C.I.M.-C.I.M.E. joint Euro-Summer School held in Madeira Funchal, Portugal, July 3-9, 2000 / Edition 1

by Luigi Ambrosio, Klaus Deckelnick, Gerhard Dziuk, Masayasu Mimura
     
 

ISBN-10: 3540140336

ISBN-13: 9783540140337

Pub. Date: 08/05/2003

Publisher: Springer Berlin Heidelberg

Interfaces are geometrical objects modelling free or moving boundaries and arise in a wide range of phase change problems in physical and biological sciences, particularly in material technology and in dynamics of patterns. Especially in the end of last century, the study of evolving interfaces in a number of applied fields becomes increasingly important, so that

Overview

Interfaces are geometrical objects modelling free or moving boundaries and arise in a wide range of phase change problems in physical and biological sciences, particularly in material technology and in dynamics of patterns. Especially in the end of last century, the study of evolving interfaces in a number of applied fields becomes increasingly important, so that the possibility of describing their dynamics through suitable mathematical models became one of the most challenging and interdisciplinary problems in applied mathematics. The 2000 Madeira school reported on mathematical advances in some theoretical, modelling and numerical issues concerned with dynamics of interfaces and free boundaries. Specifically, the five courses dealt with an assessment of recent results on the optimal transportation problem, the numerical approximation of moving fronts evolving by mean curvature, the dynamics of patterns and interfaces in some reaction-diffusion systems with chemical-biological applications, evolutionary free boundary problems of parabolic type or for Navier-Stokes equations, and a variational approach to evolution problems for the Ginzburg-Landau functional.

Product Details

ISBN-13:
9783540140337
Publisher:
Springer Berlin Heidelberg
Publication date:
08/05/2003
Series:
Lecture Notes in Mathematics / C.I.M.E. Foundation Subseries, #1812
Edition description:
2003
Pages:
248
Product dimensions:
6.10(w) x 9.25(h) x 0.36(d)

Table of Contents

Preface.- 1. L. Ambrosio: Lecture Notes on Optimal Transport Problems.- 2. K. Deckelnick and G. Gziuk: Numerical Approximation of Mean Curvature Flow of Graphs and Level Sets.- 3. M. Mimura: Reaction-Diffusion Systems Arising in Biological and Chemical Systems: Application of Singular Limit Procedures.- 4. V. A. Solonnikov: Lectures on Evolution Free Boundary Problems: Classical Solutions.- 5. H. M. Soner: Variational and Dynamic Problems for the Ginzburg-Landau Functional.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >