Mathematical Ecology of Populations and Ecosystems / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $176.73
Usually ships in 1-2 business days
(Save 24%)
Other sellers (Hardcover)
  • All (7) from $176.73   
  • New (5) from $176.73   
  • Used (2) from $224.58   


"Population ecologists study how births and deaths affect the dynamics of populations and communities while ecosystem ecologists study how species control the flux of energy and materials through food webs and ecosystems. Although all these processes occur simultaneously in nature, the mathematical frameworks bridging the two disciplines have developed independently. Consequently, this independent development of theory has impeded the cross-fertilization of population and ecosystem ecology. Using recent developments from dynamical systems theory, this advanced undergraduate/graduate level textbook shows how to bridge the two disciplines seamlessly. The book shows how bifurcations between the solutions of models can help understand regime shifts in natural populations and ecosystems once thresholds in rates of births, deaths, consumption, competition, nutrient inputs, and decay are crossed." Mathematical Ecology is essential reading for students of ecology who have had a first course in calculus and linear algebra or students in mathematics wishing to learn how dynamical systems theory can be applied to ecological problems.
Read More Show Less

Editorial Reviews

From the Publisher
"Nevertheless, it is an excellent summary which will sweep away the cobwebs from the mind of someone who has learnt this stuff at some time in the past. . . It would be ideal as a text for a course taught in a mathematics department, to convince mathematics students that their skills in differential equations can be applied to ecological problems." (Austral Ecology, 2011)

"Its best feature a the scientific soundness t hat permeates the whole book, founded on a robust mathematical treatment of most of the arguments." (Ecoscience, June 2010)"I find the publication extremely valuable in the analytical tools that it provides and the depth in which they are covered." (The Quarterly Review of Biology, June 2009)

"I would recommend this book to students or ecologists who work in either population or ecosystems ecology. The mathematics is dense at times, but Pastor does an excellent job of guiding us through the equations and helping us understand what they mean in an ecological context." (Ecology, June 2009)

Read More Show Less

Product Details

  • ISBN-13: 9781405188111
  • Publisher: Wiley
  • Publication date: 8/19/2008
  • Edition description: New
  • Edition number: 1
  • Pages: 344
  • Product dimensions: 7.60 (w) x 9.70 (h) x 0.90 (d)

Meet the Author

John Pastor is Professor of Biology, at University of Minnesota Duluth, USA

Read More Show Less

Table of Contents




Part I: Preliminaries.

1. What is Mathematical Ecology and Why Should We Do It?.

2. Mathematical Toolbox.

Part II: Populations.

3. Homogeneous Populations: Exponential and Geometric Growth and Decay.

4. Age- and Stage-structured Linear Models: Relaxing The Assumption Of Population Homogeneity.

5. Nonlinear Models of Single Populations: The Continuous Time Logistic Model.

6. Discrete Logistic Growth, Oscillations, and Chaos.

7. Harvesting and the Logistic Model.

8. Predators and their Prey.

9. Competition between Two Species, Mutualism, and Species Invasions.

10. Multispecies Community and Food Web Models.

Part III: Ecosystems.

11. Inorganic Resources, Mass Balance, Resource Uptake, and Resource Use Efficiency.

12. Litter Return, Nutrient Cycling, and Ecosystem Stability.

13. Consumer Regulation of Nutrient Cycling.

14. Stoichiometry and Linked Element Cycles.

Part IV: Populations and Ecosystems in Space and Time.

15. Transitions between Populations and States in Landscapes.

16. Diffusion, Advection, the Spread of Populations and Resources, and the Emergence of Spatial Patterns.

Appendix: MatLab Commands for Equilibrium and Stability Analysis of Multi-compartment Models by Solving the Jacobian and its Eigenvalues.



Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)