Mathematical Techniques In Multisensor Data Fusion

Mathematical Techniques In Multisensor Data Fusion

by David Lee Hall
ISBN-10:
0890065586
ISBN-13:
9780890065587
Pub. Date:
02/01/1992
Publisher:
Artech House, Incorporated
ISBN-10:
0890065586
ISBN-13:
9780890065587
Pub. Date:
02/01/1992
Publisher:
Artech House, Incorporated
Mathematical Techniques In Multisensor Data Fusion

Mathematical Techniques In Multisensor Data Fusion

by David Lee Hall

Hardcover

$125.0
Current price is , Original price is $125.0. You
$125.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.


Overview

This invaluable reference offers the most comprehensive introduction available to the concepts of multisensor data fusion. It introduces key algorithms, provides advice on their utilization, and raises issues associated with their implementation. With a diverse set of mathematical and heuristic techniques for combining data from multiple sources, the book shows how to implement a data fusion system, describes the process for algorithm selection, functional architectures and requirements for ancillary software, and illustrates man-machine interface requirements an database issues.

Product Details

ISBN-13: 9780890065587
Publisher: Artech House, Incorporated
Publication date: 02/01/1992
Series: Artech House Radar Library Series
Pages: 320
Product dimensions: 6.00(w) x 9.00(h) x 0.88(d)

Table of Contents

Prefacexiii
Chapter 1Introduction to Multisensor Data Fusion1
1.1Introduction1
1.2Fusion Applications3
1.3Sensors and Sensor Data8
1.4The Inference Hierarchy: Output Data16
1.5A Data Fusion Model18
1.6Benefits of Data Fusion22
1.7Architectural Concepts and Issues27
1.8Limitations of Data Fusion32
Chapter 2Introduction to the Joint Directors of Laboratories (JDL) Data Fusion Process Model and Taxonomy of Algorithms37
2.1Introduction to the JDL Data Fusion Processing Model37
2.2Level 1 Fusion Algorithms42
2.2.1Data Alignment44
2.2.2Data/Object Correlation44
2.2.3Object Position, Kinematic, and Attribute Estimation45
2.2.4Object Identity Estimation47
2.3Level 2 Fusion Algorithms54
2.4Level 3 Fusion Algorithms57
2.5Level 4 Fusion Algorithms59
2.6Level 5 Fusion Techniques62
2.7Ancillary Support Functions65
2.8Alternative Data Fusion Process Models66
2.8.1Dasarathy's Functional Model66
2.8.2Boyd's Decision Loop67
2.8.3Bedworth and O'Brien's Omnibus Process Model68
2.8.4TRIP Model69
Chapter 3Level 1 Processing: Data Association and Correlation73
3.1Introduction73
3.2Process Model for Correlation78
3.3Hypothesis Generation80
3.3.1Characterizing the Hypothesis Generation Problem85
3.3.2Overview of Hypothesis Generation Techniques92
3.4Hypothesis Evaluation99
3.4.1Characterizing the Hypothesis Evaluation Problem101
3.4.2Overview of Hypothesis Evaluation Techniques105
3.5Hypothesis Selection Techniques109
3.5.1Defining the Hypothesis Selection Space112
3.5.2Overview of Hypothesis Selection Techniques116
Chapter 4Level 1 Fusion: Kinematic and Attribute Estimation129
4.1Introduction129
4.2Overview of Estimation Techniques132
4.2.1System Models133
4.2.2Optimization Criteria136
4.2.3Optimization Approach140
4.2.4Processing Approach143
4.3Batch Estimation144
4.3.1Derivation of Weighted Least Squares Solution144
4.3.2Processing Flow149
4.3.3Batch Processing Implementation Issues152
4.4Sequential Estimation153
4.4.1Derivation of Sequential Weighted Least Squares Solution154
4.4.2Sequential Estimation Processing Flow156
4.4.3Sequential Processing Implementation Issues159
4.4.4The Alpha-Beta Filter160
4.5Covariance Error Estimation163
4.6Recent Developments in Estimation166
Chapter 5Identity Declaration171
5.1Identity Declaration and Pattern Recognition171
5.2Feature Extraction178
5.3Parametric Templates185
5.4Cluster Analysis Techniques187
5.5Adaptive Neural Networks193
5.6Physical Models196
5.7Knowledge-Based Methods198
5.8Hybrid Techniques200
Chapter 6Decision-Level Identity Fusion205
6.1Introduction205
6.2Classical Inference209
6.3Bayesian Inference214
6.4Dempster-Shafer's Method220
6.5Generalized Evidence Processing (GEP) Theory229
6.6Heuristic Methods for Identity Fusion231
6.7Implementation and Trade-Offs234
6.7.1Inference Accuracy and Performance235
6.7.2Computer Resource Requirements236
6.7.3A Priori Data Requirements236
Chapter 7Knowledge-Based Approaches239
7.1Brief Introduction to Artificial Intelligence239
7.2Overview of Expert Systems245
7.2.1Expert System Concept245
7.2.2The Inference Process247
7.2.3Forward and Backward Chaining249
7.2.4Knowledge Representation250
7.2.5Representing Uncertainty253
7.2.6Search Techniques260
7.2.7Architectures for Knowledge-Based Systems263
7.3Implementation of Expert Systems266
7.3.1Life-Cycle Development Model for Expert Systems266
7.3.2Knowledge Engineering269
7.3.3Test and Evaluation272
7.3.4Expert System Development Tools275
7.4Logical Templating Techniques278
7.5Bayes Belief Systems283
7.6Intelligent Agent Systems285
Chapter 8Level 4 Processing: Process Monitoring and Optimization291
8.1Introduction291
8.2Extending the Concept of Level 4 Processing297
8.3Techniques for Level 4 Processing300
8.3.1Sensor Management Functions300
8.3.2General Sensor Controls302
8.3.3Optimization of System Resources305
8.3.4Measures of Effectiveness and Performance306
8.4Auction-Based Methods308
8.4.1Market Components309
8.4.2Multiattribute Auctions310
8.4.3Multiattribute Auction Algorithms311
8.5Research Issues in Level 4 Processing311
Chapter 9Level 5: Cognitive Refinement and Human-Computer Interaction315
9.1Introduction315
9.2Cognitive Aspects of Situation Assessment317
9.3Individual Differences in Information Processing320
9.4Enabling HCI Technologies320
9.4.1Visual and Graphical Interfaces321
9.4.2Aural Interfaces and Natural Language Processing (NLP)325
9.4.3Haptic Interfaces327
9.4.4Gesture Recognition328
9.4.5Wearable Computers329
9.5Computer-Aided Situation Assessment330
9.5.1Computer-Aided Cognition330
9.5.2Utilization of Language Constructs331
9.5.3Areas for Research334
9.6An SBIR Multimode Experiment in Computer-Based Training336
9.6.1SBIR Objective336
9.6.2Experimental Design and Test Approach337
9.6.3CBT Implementation338
9.6.4Summary of Results340
9.6.5Implications for Data Fusion Systems341
Chapter 10Implementing Data Fusion Systems345
10.1Introduction345
10.2Requirements Analysis and Definition349
10.3Sensor Selection and Evaluation351
10.4Functional Allocation and Decomposition356
10.5Architecture Trade-Offs358
10.6Algorithm Selection364
10.7Database Definition369
10.8HCI Design373
10.9Software Implementation377
10.10Test and Evaluation379
Chapter 11Emerging Applications of Multisensor Data Fusion385
11.1Introduction385
11.2Survey of Military Applications386
11.3Emerging Nonmilitary Applications392
11.3.1Intelligent Monitoring of Complex Systems393
11.3.2Medical Applications396
11.3.3Law Enforcement397
11.3.4Nondestructive Testing (NDT)398
11.3.5Robotics398
11.4Commercial Off The Shelf (COTS) Tools399
11.4.1Survey of COTS Software399
11.4.2Special Purpose COTS Software399
11.4.3General Purpose Data Fusion Software402
11.4.4A Survey of Surveys406
11.5Perspectives and Comments408
Chapter 12Automated Information Management415
12.1Introduction415
12.2Initial Automated Information Manager: Automated Targeting Data Fusion419
12.3Automated Targeting Data Fusion: Structure and Flow424
12.4Automatic Information Needs Resolution Example: Automated Imagery Corroboration433
12.4.1Automated Image Corroboration Example436
12.5Automated Information Manager: Ubiquitous Utility441
About The Authors445
Index447
From the B&N Reads Blog

Customer Reviews