Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Mathematics from Leningrad to Austin: George G. Lorentz' Selected Works in Real, Functional and Numerical Analysis, Volume 1 / Edition 1

Mathematics from Leningrad to Austin: George G. Lorentz' Selected Works in Real, Functional and Numerical Analysis, Volume 1 / Edition 1

by Rudolph A. Lorentz

ISBN-10: 0817637109

ISBN-13: 9780817637101

Pub. Date: 07/15/1997

Publisher: Birkhauser Verlag

Product Details

Birkhauser Verlag
Publication date:
Contemporary Mathematicians Series
Edition description:
Product dimensions:
1.31(w) x 10.00(h) x 7.00(d)

Table of Contents

— Volume 1.- Mathematics in a Broader Perspective (unpublished papers).- A Report on the University of Leningrad.- On the Work of the Mathematical Mind.- Proofs in Mathematics.- Writing Mathematical Books.- I. Summability and Number Theory.- G.G. Lorentz and the Theory of Summability.- [1] Über lineare Summierungsverfahren.- [8] Beziehungen zwischen den Umkehrsatzen der Limitierungstheorie.- [10] Über Limitierungsverfahren, die von einem Stieltjes-Integral abhangen.- [11] Eine Bemerkung über Limitierungsverfahren, die nicht schwächer als ein Cesàro-Verfahren sind.- [12] Fourier-Koeffizienten und funktionklassen.- [14] Tauberian theorems and Tauberian conditions.- [17] A contribution to the theory of divergent sequences.- [22] Direct theorems on methods of summability.- [23] (with K. Knoop) Beiträge zur absoluten.- [28] Direct theorems on methods of summability.- [29] Riesz methods of summation and orthogonal series.- [31] (with M.S. Macphail) Unbounded operators and a theorem of A. Robinson.- [33] Multiplicity of representation of integers by sums of elements of two given sets.- [36] (with A.G. Robinson) Core-consistency and total inclusion for methods of summability.- [37] Tauberian theorems for absolute summability.- [38] On a problem of additive number theory.- [39] Borel and Banach properties of methods of summation.- [42] (with K.L Zeller) Über Paare von limitierungsverfahren.- [43] (with K.L Zeller) Series rearrangements and analytic sets.- [44] (with P. Erdös) On the probability that n and g(n) are relatively prime.- [45] (with B.J. Eisenstadt) Boolean rings and Banach lattices.- [54] (with K.L. Zeller) Strong and ordinary summability.- [56] (with K.L. Zeller) Summation of sequences and series.- [80] (with K.L. Zeller) o-but not O-Tauberian theorems.- II. Interpolation.- The work of G.G. Lorentz on Birkhoff interpolation.- [76] Birkhoff approximation and the problem of free matrices.- [82] The Birkhoff interpolation theorem: New methods and results.- [84] (with K.L Zeller) Birkhoff interpolation problem; coalescence of rows.- [85] Zeros of splines and Birkhoff’s kernel.- [88] Independant knots in Birkhoff’s interpolation.- [91] Coalescence of matrices, regularity and singularity of Birkhoff interpolation problems.- [94] (with S.D. Riemenschneider) Birkhoff quadrature matrices.- [95] Symmetry in Birkhoff matrices.- [97] (with S.D. Riemenschneider) Probabilistic approach to Schoenberg’s problem in Birkhoff interpolation.- [99] (with S.D. Riemenschneider) Birkhoff interpolation: some applications of coalescence.- [102] Independent sets of knots and singularity of interpolation matrices.- [103] (with R.A. Lorentz) Probability and interpolation.- [104] (with N. Dyn and S.D. Riemenschneider) Continuity of the Birkhoff interpolation.- [105] The analytic character of the Birkhoff interpolation polynomials.- [109] (with K. Jetter and S.D. Riemenschneider) Rolle theorem in spline interpolation.- [114] (with R.A. Lorentz) Multivariate interpolation.- [116] (with R.A. Lorentz) Solvability problems of bivariate interpolation.- [117] Classic interpolation by polynomials in two variables.- [118] (with R.A. Lorentz) Solvability problems of bivariate approximation II: Applications.- [122] Solvability of multivariate interpolation.- [124] Notes on approximation.- [126] (with R.A. Lorentz) Bivariate Hermite interpolation and application to algebraic geometry.

Customer Reviews

Average Review:

Post to your social network


Most Helpful Customer Reviews

See all customer reviews