Mathematische Einführung in Data Science
Dieses Lehrbuch richtet sich an Studierende der Mathematik ab dem dritten Studienjahr. Basierend auf den mathematischen Grundvorlesungen werden kanonische Themen aus den Bereichen Data Science und Machine Learning durchgenommen. Dabei stehen rigorose Beweise und ein systematisches Verständnis der zugrundeliegenden Ideen im Vordergrund.

Der Text wird abgerundet durch 121 unterrichtserprobte Aufgaben. Behandelte Themen sind u.a. k-nächste Nachbarn, lineare und logistische Regression, Clustering, bestpassende Unterräume, Hauptkomponentenanalyse, Dimensionalitätsreduktion, kollaboratives Filtern, Perzeptron, Support-Vector-Maschinen und neuronale Netze.

1144479366
Mathematische Einführung in Data Science
Dieses Lehrbuch richtet sich an Studierende der Mathematik ab dem dritten Studienjahr. Basierend auf den mathematischen Grundvorlesungen werden kanonische Themen aus den Bereichen Data Science und Machine Learning durchgenommen. Dabei stehen rigorose Beweise und ein systematisches Verständnis der zugrundeliegenden Ideen im Vordergrund.

Der Text wird abgerundet durch 121 unterrichtserprobte Aufgaben. Behandelte Themen sind u.a. k-nächste Nachbarn, lineare und logistische Regression, Clustering, bestpassende Unterräume, Hauptkomponentenanalyse, Dimensionalitätsreduktion, kollaboratives Filtern, Perzeptron, Support-Vector-Maschinen und neuronale Netze.

74.99 In Stock
Mathematische Einführung in Data Science

Mathematische Einführung in Data Science

by Sven-Ake Wegner
Mathematische Einführung in Data Science

Mathematische Einführung in Data Science

by Sven-Ake Wegner

Paperback(1. Aufl. 2023)

$74.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Dieses Lehrbuch richtet sich an Studierende der Mathematik ab dem dritten Studienjahr. Basierend auf den mathematischen Grundvorlesungen werden kanonische Themen aus den Bereichen Data Science und Machine Learning durchgenommen. Dabei stehen rigorose Beweise und ein systematisches Verständnis der zugrundeliegenden Ideen im Vordergrund.

Der Text wird abgerundet durch 121 unterrichtserprobte Aufgaben. Behandelte Themen sind u.a. k-nächste Nachbarn, lineare und logistische Regression, Clustering, bestpassende Unterräume, Hauptkomponentenanalyse, Dimensionalitätsreduktion, kollaboratives Filtern, Perzeptron, Support-Vector-Maschinen und neuronale Netze.


Product Details

ISBN-13: 9783662686966
Publisher: Springer Berlin Heidelberg
Publication date: 01/25/2024
Edition description: 1. Aufl. 2023
Pages: 303
Product dimensions: 6.10(w) x 9.25(h) x (d)
Language: German

About the Author

Sven-Ake Wegner promovierte 2010 in Funktionalanalysis und ist nach mehreren, teils internationalen wissenschaftlichen Stationen seit 2020 Privatdozent für Mathematik an der Universität Hamburg.

Table of Contents

Vorwort.- 1 Was ist Data (Science)?.- 2 Affin-lineare, polynomiale und logistische Regression.- 3 k-nächste Nachbarn.- 4 Clustering.- 5 Graphenclustering.- 6 Bestpassende Unterräume.- 7 Singulärwertzerlegung.- 8 Fluch und Segen der hohen Dimension.- 9 Maßkonzentration.- 10 Gaußsche Zufallsvektoren in hohen Dimensionen.- 11 Dimensionalitätsreduktion à la Johnson-Lindenstrauss.- 12 Trennung von Gaußianen und Parameteranpassung.- 13 Perzeptron.- 14 Support-Vector-Maschinen.- 15 Kernmethode.- 16 Neuronale Netze.- 17 Gradientenverfahren für konvexe Funktionen.- A Ausgewählte Resultate der Wahrscheinlichkeitstheorie.- Literaturverzeichnis.- Stichwortverzeichnis.

From the B&N Reads Blog

Customer Reviews