Maximum Principles for the Hill's Equation
Maximum Principles for the Hill's Equation focuses on the application of these methods to nonlinear equations with singularities (e.g. Brillouin-bem focusing equation, Ermakov-Pinney,…) and for problems with parametric dependence. The authors discuss the properties of the related Green's functions coupled with different boundary value conditions. In addition, they establish the equations' relationship with the spectral theory developed for the homogeneous case, and discuss stability and constant sign solutions. Finally, reviews of present classical and recent results made by the authors and by other key authors are included. - Evaluates classical topics in the Hill's equation that are crucial for understanding modern physical models and non-linear applications - Describes explicit and effective conditions on maximum and anti-maximum principles - Collates information from disparate sources in one self-contained volume, with extensive referencing throughout
1133480184
Maximum Principles for the Hill's Equation
Maximum Principles for the Hill's Equation focuses on the application of these methods to nonlinear equations with singularities (e.g. Brillouin-bem focusing equation, Ermakov-Pinney,…) and for problems with parametric dependence. The authors discuss the properties of the related Green's functions coupled with different boundary value conditions. In addition, they establish the equations' relationship with the spectral theory developed for the homogeneous case, and discuss stability and constant sign solutions. Finally, reviews of present classical and recent results made by the authors and by other key authors are included. - Evaluates classical topics in the Hill's equation that are crucial for understanding modern physical models and non-linear applications - Describes explicit and effective conditions on maximum and anti-maximum principles - Collates information from disparate sources in one self-contained volume, with extensive referencing throughout
74.95 In Stock
Maximum Principles for the Hill's Equation

Maximum Principles for the Hill's Equation

Maximum Principles for the Hill's Equation

Maximum Principles for the Hill's Equation

eBook

$74.95 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

Maximum Principles for the Hill's Equation focuses on the application of these methods to nonlinear equations with singularities (e.g. Brillouin-bem focusing equation, Ermakov-Pinney,…) and for problems with parametric dependence. The authors discuss the properties of the related Green's functions coupled with different boundary value conditions. In addition, they establish the equations' relationship with the spectral theory developed for the homogeneous case, and discuss stability and constant sign solutions. Finally, reviews of present classical and recent results made by the authors and by other key authors are included. - Evaluates classical topics in the Hill's equation that are crucial for understanding modern physical models and non-linear applications - Describes explicit and effective conditions on maximum and anti-maximum principles - Collates information from disparate sources in one self-contained volume, with extensive referencing throughout

Product Details

ISBN-13: 9780128041260
Publisher: Elsevier Science & Technology Books
Publication date: 10/27/2017
Sold by: Barnes & Noble
Format: eBook
Pages: 252
File size: 10 MB

About the Author

Alberto Cabada is Professor at the University of Santiago de Compostela (Spain). His line of research is devoted to the existence and multiplicity of solutions of nonlinear differential equations, both ordinary and partial, as well as difference and fractional ones. He is the author of more than one hundred forty research and has authored two monographs.José Ángel Cid is Associate Professor at the Universtity of Vigo (Spain). His main line of research is the qualitative analysis of boundary and initial value problems for ordinary differential equations. He is the author or co-author of more than forty research papers.Lucía López-Somoza is a Ph.D. student at University of Santiago de Compostela (Spain). Her research is focused on the study of nonlinear functional differential equations.

Table of Contents

1. Introduction 2. Homogeneous Equation3. Non Homogeneous Equation4. Nonlinear EquationsAppendix: Sobolev Inequalities

What People are Saying About This

From the Publisher

Provides classical and modern assessment of the Hill’s equation in its homogenous and non-homogenous states

From the B&N Reads Blog

Customer Reviews