Mechanical properties of an irradiated nanocluster strengthened high-chromium ferritic alloy.

Paperback (Print)
Buy New
Buy New from BN.com
$62.72
Used and New from Other Sellers
Used and New from Other Sellers
from $72.25
Usually ships in 1-2 business days
Other sellers (Paperback)
  • All (1) from $72.25   
  • New (1) from $72.25   

More About This Textbook

Overview

Advanced nano-structured ferritic alloys (NFAs) containing a high density of ultra-fine (2-5 nm) nanoclusters (NCs) enriched in Y, Ti, and O are considered promising candidates for structural components in future nuclear systems. The superior tensile strengths of NFAs relative to conventional oxide dispersion strengthened (ODS) ferritic alloys are attributed to the high number density of NCs, which may provide effective trapping centers for point defects and transmutation products generated during neutron irradiation. This study consists of production, irradiation, and characterization of an advanced NFA, designated 14YWT, currently being developed at Oak Ridge National Laboratory (ORNL), in Oak Ridge, Tennessee. The purpose of this study was to characterize the tensile and fracture toughness properties of 14YWT produced during this project at ORNL before and after irradiation to evaluate it's resistance to radiation-induced changes in mechanical properties. Another alloy, designated 14WT, was produced during this project using identical production parameters used for 14YWT but without the Y2O3 addition during ball milling required for NC formation. Tensile and fracture toughness specimens were produced from both alloys and irradiated in small "rabbit" capsules in the High Flux Isotope Reactor (HFIR) at ORNL. Five other structural alloys that are currently being evaluated for applications in nuclear environments were irradiated and tested during this project to serve as comparison materials. Microstructural characterization was performed using optical microscopy, scanning electron microscopy, transmission electron microscopy, and atom probe tomography. Tensile strengths for 14YWT were found to be far superior to the other alloys for both irradiated and unirradiated conditions, with yield strength for 14YWT decreasing from ∼1,450 MPa at 26°C to ∼700 MPa at 600°C. Moderate radiation-induced hardening (50-200 MPa) and reduction in ductility was observed for 14YWT for all irradiation conditions and test temperatures. Fracture toughness results showed 14YWT in the unirradiated condition had a fracture toughness transition temperature (FTTT) around -150°C and upper-shelf KJIc values around 175 MPa✓m. Results from irradiated 14YWT fracture toughness tests were found to closely mirror the unirradiated data and no shift in FTTT or decrease in KJIc values were observed following neutron irradiation to 1.5 dpa at 300°C. Master curve analysis of the fracture toughness data show 14YWT to have a To reference temperature of -188 and -176°C in the unirradiated and irradiated condition, respectively, which is unprecedented for a high-strength dispersion strengthened ferritic alloy. The results from this study show 14YWT to be resistant to radiation-induced changes in mechanical properties and a promising candidate for structural applications in future nuclear systems.
Read More Show Less

Product Details

  • ISBN-13: 9781248997666
  • Publisher: BiblioLabsII
  • Publication date: 5/25/2012
  • Pages: 276
  • Product dimensions: 8.00 (w) x 10.00 (h) x 0.72 (d)

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)