Mechanical Systems, Classical Models: Volume 1: Particle Mechanics

Overview

All phenomena in nature are characterized by motion; this is an essential property of matter, having infinitely many aspects. Motion can be mechanical, physical, chemical or biological, leading to various sciences of nature, mechanics being one of them. Mechanics deals with the objective laws of mechanical motion of bodies, the simplest form of motion.

In the study of a science of nature mathematics plays an important role. Mechanics is the first science of nature which was ...

See more details below
Paperback (Softcover reprint of hardcover 1st ed. 2007)
$322.21
BN.com price
(Save 4%)$339.00 List Price
Other sellers (Paperback)
  • All (8) from $254.09   
  • New (7) from $254.09   
  • Used (1) from $394.30   
Sending request ...

Overview

All phenomena in nature are characterized by motion; this is an essential property of matter, having infinitely many aspects. Motion can be mechanical, physical, chemical or biological, leading to various sciences of nature, mechanics being one of them. Mechanics deals with the objective laws of mechanical motion of bodies, the simplest form of motion.

In the study of a science of nature mathematics plays an important role. Mechanics is the first science of nature which was expressed in terms of mathematics by considering various mathematical models, associated to phenomena of the surrounding nature. Thus, its development was influenced by the use of a strong mathematical tool; on the other hand, we must observe that mechanics also influenced the introduction and the development of many mathematical notions.

In this respect, the guideline of the present book is precisely the mathematical model of mechanics. A special accent is put on the solving methodology as well as on the mathematical tools used; vectors, tensors and notions of field theory. Continuous and discontinuous phenomena, various mechanical magnitudes are presented in a unitary form by means of the theory of distributions. Some appendices give the book an autonomy with respect to other works, special previous mathematical knowledge being not necessary.

Some applications connected to important phenomena of nature are presented, and this also gives one the possibility to solve problems of interest from the technical, engineering point of view. In this form, the book becomes – we dare say – a unique outline of the literature in the field; the author wishes to present the most important aspects connected with the study of mechanical systems, mechanics being regarded as a science of nature, as well as its links to other sciences of nature. Implications in technical sciences are not neglected.

Audience:
Librarians, and researchers interested in the fundamentals of mechanics

Read More Show Less

Editorial Reviews

From the Publisher
From the reviews:

"This book is the first volume of a treatise on the classical theory of mechanical systems. … The book is useful at the graduate level in physics and mechanical engineering, as well as in mathematics. … The mathematical aspects are carefully presented. The text provides a detailed analysis of some generic examples, which will be enough to show how the theory is applied, at least for experienced readers. The subjects covered by the text are divided into 10 large chapters." (José Fernández-Núñez, Mathematical Reviews, Issue 2008 j)

Read More Show Less

Product Details

Meet the Author

Prof. Dr. Doc. Petre P. Teodorescu
Born: June 30, 1929, Bucuresti.
M.Sc.: Faculty of Mathematics of the University of Bucharest, 1952; Faculty of Bridges of the Technical University of Civil Engineering, Bucharest, 1953.
Ph.D.: "Calculus of rectangular deep beams in a general case of support and loading", Technical University of Civil Engineering, Bucharest, 1955.
Academic Positions: Consulting Professor.
at the University of Bucharest, Faculty of Mathematics.
Fields of Research: Mechanics of Deformable Solids (especially Elastic Solids), Mathematical Methods of Calculus in Mechanics.
Selected Publications:
1. "Applications of the Theory of Distributions in Mechanics", Editura Academiei-Abacus Press, Bucuresti-Tunbrige Wells, Kent, 1974 (with W. Kecs);
2. "Dynamics of Linear Elastic Bodies", Editura Academiei-Abacus Press, Bucuresti-Tunbrige Wells, Kent, 1975;
3. "Spinor and Non-Euclidean Tensor Calculus with Applications", Editura Tehnic-Abacus Press, Bucuresti-Tunbrige Wells, Kent, 1983 (with I. Beju and E. Soos);
4. "Mechanical Systems", vol. I, II, Editura Tehnica, Bucuresti, 1988.
Invited Addresses: The 2nd European Conference of Solid Mechanics, September 1994, Genoa, Italy: Leader of a Section of the Conference and a Communication.
Lectures Given Abroad: Hannover, Dortmund, Paderborn, Germany, 1994; Padova, Pisa, Italy, 1994.
Additional Information: Prize "Gh. Titeica" of the Romanian Academy in 1966; Member in the Advisory Board of Meccanica (Italy), Mechanics Research Communications and Letters in Applied Engineering Sciences (U.S.A.); Member of GAMM (Germany) and AMS (U.S.A.); Reviewer: Mathematical Reviews, Zentralblatt fuer Mathematik und ihre Grenzgebiete, Ph.D. advisor.

Read More Show Less

Table of Contents

PREFACE
1. NEWTONIAN MODEL OF MECHANICS. 1.1. Mechanics, science of nature. 1.1.1. Basic notions. 1.1.2. Mathematical model of mechanics. 1.2. Dimensional analysis. Units. Homogeneity. Similitude. 1.2.1. Physical quantities. Units. 1.2.2. Homogeneity. 1.2.3. Similitude.
2. MECHANICS OF THE SYSTEMS OF FORCES. 2.1. Introductory notions. 2.1.1. Decomposition of forces. Bases. 2.1.2. Products of vectors. 2.2. Systems of forces. 2.2.1. Moments. 2.2.2. Reduction of systems of forces.
3. MASS GEOMETRY. DISPLACEMENTS. CONSTRAINTS. 3.1. Mass geometry. 3.1.1. Centres of mass. 3.1.2. Moments of inertia. 3.2. Displacements. Constraints. 3.2.1. Displacements. 3.2.2. Constraints.
4. STATICS. 4.1. Statics of discrete mechanical systems. 4.1.1. Statics of the particle. 4.1.2. Statics of discrete systems of particles. 4.2. Statics of solids. 4.2.1. Statics of rigid solids. 4.2.2. Statics of threads.
5. KINEMATICS. 5.1. Kinematics of the particle. 5.1.1. Trajectory and velocity of the particle. 5.1.2. Acceleration of the particle. 5.1.3. Particular cases of motion of a particle. 5.2. Kinematics of the rigid solid. 5.2.1. Kinematical formulae in the motion of a rigid solid. 5.2.2. Particular cases of motion of the rigid solid. 5.2.3. General motion of the rigid solid. 5.3. Relative motion. Kinematics of mechanical systems. 5.3.1. Relative motion of a particle. 5.3.2. Relative motion of the rigid solid. 5.3.3. Kinematics of systems of rigid solids.
6. DYNAMICS OF THE PARTICLE WITH RESPECT TO AN INERTIAL FRAME OF REFERENCE. 6.1. Introductory notions. General theorems. 6.1.1. Introductory notions. 6.1.2. General theorems. 6.2. Dynamics of the particle subjected to constraints. 6.2.1. General considerations. 6.2.2. Motion of the particle with one or two degrees of freedom.
7. PROBLEMS OF DYNAMICS OF THE PARTICLE. 7.1. Motion of the particle in a gravitational field. 7.1.1. Rectilinear and plane motion. 7.1.2. Motion of a heavy particle. 7.1.3. Pendulary motion. 7.2. Other problems of dynamics of the particle. 7.2.1. Tauhronous motions. Motions on a brachishrone and on a geodesic curve. 7.2.2. Other applications. 7.2.3. Stability of equilibrium of a particle.
8. DYNAMICS OF THE PARTICLE IN A FIELD OF ELASTIC FORCES. 8.1. The motion of a particle acted upon by a central force. 8.1.1. General results. 8.1.2. Other problems. 8.2. Motion of a particle subjected to the action of an elastic force. 8.2.1. Mechanical systems with two degrees of freedom. 8.2.2. Mechanical systems with a single degree of freedom.
9. NEWTONIAN THEORY OF UNIVERSAL ATTRACTION. 9.1. Newtonian model of universal attraction. 9.1.1. Principle of universal attraction. 9.1.2. Theory of Newtonian potential. 9.2. Motion due to the action of Newtonian forces of attraction. 9.2.1. Motion of celestial bodies. 9.2.2. Problem of artificial satellites of the Earth and of interplanetary vehicles. 9.2.3. Applications to the theory of motion at the atomic level.
10. OTHER CONSIDERATIONS ON PARTICLE DYNAMICS. 10.1. Motion with discontinuity. 10.1.1. Particle dynamics. 10.1.2. General theorems. 10.2. Motion of a particle with respect to a non-inertial frame of reference. 10.2.1. Relative motion. Relative equilibrium. 10.2.2. Elements of terrestrial mechanics. 10.3. Dynamics of the particle of variable mass. 10.3.1. Mathematical model of the motion. General theorems. 10.3.2. Motion of a particle of variable mass in a gravitational field. 10.3.3. Mathematical pendulum. Motion of a particle of variable mass in a field of central forces. 10.3.4. Applications of Meshcherskii’s generalized equation.
APPENDIX. 1. Elements of vector calculus. 1.1. Vector analysis. 1.2. Exterior differential calculus. 2. Notions of field theory. 2.1. Conservative vectors. Gradient. 2.2. Differential operators of first and second order. 2.3. Integral formulae. 3. Elements of theory of distributions. 3.1. Composition of distributions. 3.2. Integral transforms in distributions. 3.3.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)