Mechanics of Materials Plus MasteringEngineering with Pearson eText -- Access Card / Edition 9

Hardcover (Print)
Buy New
Buy New from BN.com
$199.11
Used and New from Other Sellers
Used and New from Other Sellers
from $195.00
Usually ships in 1-2 business days
(Save 20%)
Other sellers (Hardcover)
  • All (17) from $195.00   
  • New (15) from $195.00   
  • Used (2) from $214.75   

Overview

ALERT: Before you purchase, check with your instructor or review your course syllabus to ensure that you select the correct ISBN. Several versions of Pearson's MyLab & Mastering products exist for each title, including customized versions for individual schools, and registrations are not transferable. In addition, you may need a CourseID, provided by your instructor, to register for and use Pearson's MyLab & Mastering products.

Packages

Access codes for Pearson's MyLab & Mastering products may not be included when purchasing or renting from companies other than Pearson; check with the seller before completing your purchase.

Used or rental books

If you rent or purchase a used book with an access code, the access code may have been redeemed previously and you may have to purchase a new access code.

Access codes

Access codes that are purchased from sellers other than Pearson carry a higher risk of being either the wrong ISBN or a previously redeemed code. Check with the seller prior to purchase.

-- For undergraduate Mechanics of Materials courses in Mechanical, Civil, and Aerospace Engineering departments.

Containing Hibbeler’s hallmark student-oriented features, this text is in four-color with a photorealistic art program designed to help students visualize difficult concepts. A clear, concise writing style and more examples than any other text further contribute to students’ ability to master the material.

This edition is available with MasteringEngineering, an innovative online program created to emulate the instructor’s office–hour environment, guiding students through engineering concepts from Mechanics of Materials with self-paced individualized coaching.

Note: Mastering is not a self-paced technology and should only be purchased when required by an instructor.

0133409325 / 9780133409321 Mechanics of Materials Plus MasteringEngineering with Pearson eText -- Standalone Access Card

Package consists of

0133254429 / 9780133254426 Mechanics of Materials 9/e

0133402738 / 9780133402735 MasteringEngineering with Pearson eText -- Standalone Access Card -- for Mechanics of Materials

Read More Show Less

Product Details

  • ISBN-13: 9780133409321
  • Publisher: Prentice Hall
  • Publication date: 7/23/2013
  • Edition description: New Edition
  • Edition number: 9
  • Sales rank: 144,548
  • Product dimensions: 8.30 (w) x 9.50 (h) x 1.50 (d)

Meet the Author

R.C. Hibbeler graduated from the University of Illinois at Urbana with a BS in Civil Engineering (major in Structures) and an MS in Nuclear Engineering. He obtained his PhD in Theoretical and Applied Mechanics from Northwestern University.

Hibbeler’s professional experience includes postdoctoral work in reactor safety and analysis at Argonne National Laboratory, and structural and stress analysis work at Chicago Bridge and Iron, as well as Sargent and Lundy in Chicago. He has practiced engineering in Ohio, New York, and Louisiana.

Hibbeler currently teaches both civil and mechanical engineering courses at the University of Louisiana, Lafayette. In the past he has taught at the University of Illinois at Urbana, Youngstown State University, Illinois Institute of Technology, and Union College.

Read More Show Less

Table of Contents

1 Stress 3

Chapter Objectives 3

1.1 Introduction 3

1.2 Equilibrium of a Deformable Body 4

1.3 Stress 22

1.4 Average Normal Stress in an Axially Loaded Bar 24

1.5 Average Shear Stress 32

1.6 Allowable Stress Design 46

1.7 Limit State Design 48

2 Strain 67

Chapter Objectives 67

2.1 Deformation 67

2.2 Strain 68

3 Mechanical Properties of Materials 83

Chapter Objectives 83

3.1 The Tension and Compression Test 83

3.2 The Stress—Strain Diagram 85

3.3 Stress—Strain Behavior of Ductile and Brittle Materials 89

3.4 Hooke’s Law 92

3.5 Strain Energy 94

3.6 Poisson’s Ratio 104

3.7 The Shear Stress—Strain Diagram 106

*3.8 Failure of Materials Due to Creep and Fatigue 109

4 Axial Load 121

Chapter Objectives 121

4.1 Saint-Venant’s Principle 121

4.2 Elastic Deformation of an Axially Loaded Member 124

4.3 Principle of Superposition 138

4.4 Statically Indeterminate Axially Loaded Member 139

4.5 The Force Method of Analysis for Axially Loaded Members 145

4.6 Thermal Stress 153

4.7 Stress Concentrations 160

*4.8 Inelastic Axial Deformation 164

*4.9 Residual Stress 166

5 Torsion 181

Chapter Objectives 181

5.1 Torsional Deformation of a Circular Shaft 181

5.2 The Torsion Formula 184

5.3 Power Transmission 192

5.4 Angle of Twist 204

5.5 Statically Indeterminate Torque-Loaded Members 218

*5.6 Solid Noncircular Shafts 225

*5.7 Thin-Walled Tubes Having Closed Cross Sections 228

5.8 Stress Concentration 238

*5.9 Inelastic Torsion 241

*5.10 Residual Stress 243

6 Bending 259

Chapter Objectives 259

6.1 Shear and Moment Diagrams 259

6.2 Graphical Method for Constructing Shear and Moment Diagrams 266

6.3 Bending Deformation of a Straight Member 285

6.4 The Flexure Formula 289

6.5 Unsymmetric Bending 306

*6.6 Composite Beams 316

*6.7 Reinforced Concrete Beams 319

*6.8 Curved Beams 323

6.9 Stress Concentrations 330

*6.10 Inelastic Bending 339

7 Transverse Shear 363

Chapter Objectives 363

7.1 Shear in Straight Members 363

7.2 The Shear Formula 365

7.3 Shear Flow in Built-Up Members 382

7.4 Shear Flow in Thin-Walled Members 391

*7.5 Shear Center for Open Thin-Walled Members 396

8 Combined Loadings 409

Chapter Objectives 409

8.1 Thin-Walled Pressure Vessels 409

8.2 State of Stress Caused by Combined Loadings 416

9 Stress Transformation 441

Chapter Objectives 441

9.1 Plane-Stress Transformation 441

9.2 General Equations of Plane-Stress Transformation 446

9.3 Principal Stresses and Maximum In-Plane Shear Stress 449

9.4 Mohr’s Circle–Plane Stress 465

9.5 Absolute Maximum Shear Stress 477

10 Strain Transformation 489

Chapter Objectives 489

10.1 Plane Strain 489

10.2 General Equations of Plane-Strain Transformation 490

*10.3 Mohr’s Circle–Plane Strain 498

*10.4 Absolute Maximum Shear Strain 506

10.5 Strain Rosettes 508

10.6 Material-Property Relationships 512

*10.7 Theories of Failure 524

11 Design of Beams and Shafts 541

Chapter Objectives 541

11.1 Basis for Beam Design 541

11.2 Prismatic Beam Design 544

*11.3 Fully Stressed Beams 558

*11.4 Shaft Design 562

12 Deflection of Beams and Shafts 573

Chapter Objectives 573

12.1 The Elastic Curve 573

12.2 Slope and Displacement by Integration 577

*12.3 Discontinuity Functions 597

*12.4 Slope and Displacement by the Moment-Area Method 608

12.5 Method of Superposition 623

12.6 Statically Indeterminate Beams and Shafts 631

12.7 Statically Indeterminate Beams and Shafts–Method of Integration 632

*12.8 Statically Indeterminate Beams and Shafts–Moment-Area Method 637

12.9 Statically Indeterminate Beams and Shafts–Method of Superposition 643

13 Buckling of Columns 661

Chapter Objectives 661

13.1 Critical Load 661

13.2 Ideal Column with Pin Supports 664

13.3 Columns Having Various Types of Supports 670

*13.4 The Secant Formula 682

*13.5 Inelastic Buckling 688

*13.6 Design of Columns for Concentric Loading 696

*13.7 Design of Columns for Eccentric Loading 707

14 Energy Methods 719

Chapter Objectives 719

14.1 External Work and Strain Energy 719

14.2 Elastic Strain Energy for Various Types of Loading 724

14.3 Conservation of Energy 737

14.4 Impact Loading 744

*14.5 Principle of Virtual Work 755

*14.6 Method of Virtual Forces Applied to Trusses 759

*14.7 Method of Virtual Forces Applied to Beams 766

*14.8 Castigliano’s Theorem 775

*14.9 Castigliano’s Theorem Applied to Trusses 777

*14.10 Castigliano’s Theorem Applied to Beams 780

Appendix

A. Geometric Properties of an Area

B. Geometric Properties of Structural Shapes

C. Slopes and Deflections of Beams

Fundamental Problems Partial Solutions and Answers

Answers for Selected Problems

Index

(*) Sections of the book that contain more advanced material are indicated by a star. Time permitting, some of these topics may be included in the course. Furthermore, this material provides a suitable reference for basic principles when it is covered in other courses, and it can be used as a basis for assigning special projects.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)