Table of Contents
Foreword xv 
Preface xvii
 Acknowledgments xix
 1 Introduction 1
 1.1 Traditional Hierarchical Control Structure 2
 1.1.1 Hierarchical Frequency Control 2
 1.1.1.1 Primary Frequency Control 4
 1.1.1.2 Secondary Frequency Control 5
 1.1.1.3 Tertiary Frequency Control 5
 1.1.2 Hierarchical Voltage Control 5
 1.1.2.1 Primary Voltage Control 6
 1.1.2.2 Secondary Voltage Control 7
 1.1.2.3 Tertiary Voltage Control 7
 1.2 Transitions and Challenges 7
 1.3 Removing Central Coordinators: Distributed Coordination 8
 1.3.1 Distributed Control 11
 1.3.2 Distributed Optimization 12
 1.4 Merging Optimization and Control 13
 1.4.1 Optimization-Guided Control 14
 1.4.2 Feedback-Based Optimization 16
 1.5 Overview of the Book 17
 Bibliography 19
 2 Preliminaries 23
 2.1 Norm 23
 2.1.1 Vector Norm 23
 2.1.2 Matrix Norm 24
 2.2 Graph Theory 26
 2.2.1 Basic Concepts 26
 2.2.2 Laplacian Matrix 26
 2.3 Convex Optimization 28
 2.3.1 Convex Set 28
 2.3.1.1 Basic Concepts 28
 2.3.1.2 Cone 30
 2.3.2 Convex Function 31
 2.3.2.1 Basic Concepts 31
 2.3.2.2 Jensen’s Inequality 35
 2.3.3 Convex Programming 35
 2.3.4 Duality 36
 2.3.5 Saddle Point 39
 2.3.6 KKT Conditions 39
 2.4 Projection Operator 41
 2.4.1 Basic Concepts 41
 2.4.2 Projection Operator 42
 2.5 Stability Theory 44
 2.5.1 Lyapunov Stability 44
 2.5.2 Invariance Principle 46
 2.5.3 Input–Output Stability 47
 2.6 Passivity and Dissipativity Theory 49
 2.6.1 Passivity 49
 2.6.2 Dissipativity 51
 2.7 Power Flow Model 52
 2.7.1 Nonlinear Power Flow 53
 2.7.1.1 Bus Injection Model (BIM) 53
 2.7.1.2 Branch Flow Model (BFM) 54
 2.7.2 Linear Power Flow 55
 2.7.2.1 DC Power Flow 55
 2.7.2.2 Linearized Branch Flow 56
 2.8 Power System Dynamics 56
 2.8.1 Synchronous Generator Model 57
 2.8.2 Inverter Model 58
 Bibliography 60
 3 Bridging Control and Optimization in Distributed Optimal Frequency Control 63
 3.1 Background 64
 3.1.1 Motivation 64
 3.1.2 Summary 66
 3.1.3 Organization 67
 3.2 Power System Model 67
 3.2.1 Generator Buses 68
 3.2.2 Load Buses 69
 3.2.3 Branch Flows 70
 3.2.4 Dynamic Network Model 72
 3.3 Design and Stability of Primary Frequency Control 74
 3.3.1 Optimal Load Control 74
 3.3.2 Main Results 75
 3.3.3 Implications 79
 3.4 Convergence Analysis 79
 3.5 Case Studies 88
 3.5.1 Test System 88
 3.5.2 Simulation Results 89
 3.6 Conclusion and Notes 92
 Bibliography 93
 4 Physical Restrictions: Input Saturation in Secondary Frequency Control 97
 4.1 Background 98
 4.2 Power System Model 100
 4.3 Control Design for Per-Node Power Balance 101
 4.3.1 Control Goals 102
 4.3.2 Decentralized Optimal Controller 103
 4.3.3 Design Rationale 105
 4.3.3.1 Primal–Dual Algorithms 105
 4.3.3.2 Design of Controller (4.6) 105
 4.4 Optimality and Uniqueness of Equilibrium 108
 4.5 Stability Analysis 112
 4.6 Case Studies 120
 4.6.1 Test System 120
 4.6.2 Simulation Results 122
 4.6.2.1 Stability and Optimality 122
 4.6.2.2 Dynamic Performance 123
 4.6.2.3 Comparison with AGC 124
 4.6.2.4 Digital Implementation 124
 4.7 Conclusion and Notes 128
 Bibliography 131
 5 Physical Restrictions: Line Flow Limits in Secondary Frequency Control 135
 5.1 Background 136
 5.2 Power System Model 137
 5.3 Control Design for Network Power Balance 138
 5.3.1 Control Goals 139
 5.3.2 Distributed Optimal Controller 141
 5.3.3 Design Rationale 142
 5.3.3.1 Primal–Dual Gradient Algorithms 142
 5.3.3.2 Controller Design 143
 5.4 Optimality of Equilibrium 144
 5.5 Asymptotic Stability 148
 5.6 Case Studies 155
 5.6.1 Test System 155
 5.6.2 Simulation Results 156
 5.6.2.1 Stability and Optimality 156
 5.6.2.2 Dynamic Performance 158
 5.6.2.3 Comparison with AGC 158
 5.6.2.4 Congestion Analysis 158
 5.6.2.5 Time Delay Analysis 161
 5.7 Conclusion and Notes 165
 Bibliography 165
 6 Physical Restrictions: Nonsmoothness of Objective Functions in Load-Frequency Control 167
 6.1 Background 167
 6.2 Notations and Preliminaries 169
 6.3 Power System Model 170
 6.4 Control Design 171
 6.4.1 Optimal Load Frequency Control Problem 172
 6.4.2 Distributed Controller Design 173
 6.5 Optimality and Convergence 176
 6.5.1 Optimality 176
 6.5.2 Convergence 178
 6.6 Case Studies 183
 6.6.1 Test System 183
 6.6.2 Simulation Results 184
 6.7 Conclusion and Notes 187
 Bibliography 188
 7 Cyber Restrictions: Imperfect Communication in Power Control of Microgrids 191
 7.1 Background 192
 7.2 Preliminaries and Model 193
 7.2.1 Notations and Preliminaries 193
 7.2.2 Economic Dispatch Model 194
 7.3 Distributed Control Algorithms 195
 7.3.1 Synchronous Algorithm 195
 7.3.2 Asynchronous Algorithm 196
 7.4 Optimality and Convergence Analysis 198
 7.4.1 Virtual Global Clock 199
 7.4.2 Algorithm Reformulation 200
 7.4.3 Optimality of Equilibrium 203
 7.4.4 Convergence Analysis 204
 7.5 Real-Time Implementation 206
 7.5.1 Motivation and Main Idea 206
 7.5.2 Real-Time ASDPD 208
 7.5.2.1 AC MGs 208
 7.5.2.2 DC Microgrids 208
 7.5.3 Control Configuration 210
 7.5.4 Optimality of the Implementation 211
 7.6 Numerical Results 213
 7.6.1 Test System 213
 7.6.2 Non-identical Sampling Rates 214
 7.6.3 Random Time Delays 217
 7.6.4 Comparison with the Synchronous Algorithm 217
 7.7 Experimental Results 219
 7.8 Conclusion and Notes 222
 Bibliography 224
 8 Cyber Restrictions: Imperfect Communication in Voltage Control of Active Distribution Networks 229
 8.1 Background 230
 8.2 Preliminaries and System Model 232
 8.2.1 Note and Preliminaries 232
 8.2.2 System Modeling 233
 8.3 Problem Formulation 234
 8.4 Asynchronous Voltage Control 235
 8.5 Optimality and Convergence 237
 8.5.1 Algorithm Reformulation 238
 8.5.2 Optimality of Equilibrium 242
 8.5.3 Convergence Analysis 243
 8.6 Implementation 245
 8.6.1 Communication Graph 245
 8.6.2 Online Implementation 246
 8.7 Case Studies 246
 8.7.1 8-Bus Feeder System 247
 8.7.2 IEEE 123-Bus Feeder System 250
 8.8 Conclusion and Notes 253
 Bibliography 254
 9 Robustness and Adaptability: Unknown Disturbances in Load-Side Frequency Control 257
 9.1 Background 258
 9.2 Problem Formulation 259
 9.2.1 Power Network 259
 9.2.2 Power Imbalance 260
 9.2.3 Equivalent Transformation of Power Imbalance 261
 9.3 Controller Design 263
 9.3.1 Controller for Known P _in j 263
 9.3.2 Controller for Time-Varying Power Imbalance 264
 9.3.3 Closed-Loop Dynamics 265
 9.4 Equilibrium and Stability Analysis 266
 9.4.1 Equilibrium 266
 9.4.2 Asymptotic Stability 269
 9.5 Robustness Analysis 274
 9.5.1 Robustness Against Uncertain Parameters 274
 9.5.2 Robustness Against Unknown Disturbances 275
 9.6 Case Studies 277
 9.6.1 System Configuration 277
 9.6.2 Self-Generated Data 279
 9.6.3 Performance Under Unknown Disturbances 282
 9.6.4 Simulation with Real Data 282
 9.6.5 Comparison with Existing Control Methods 284
 9.7 Conclusion and Notes 286
 Bibliography 287
 10 Robustness and Adaptability: Partial Control Coverage in Transient Frequency Control 289
 10.1 Background 289
 10.2 Structure-Preserving Model of Nonlinear Power System Dynamics 291
 10.2.1 Power Network 291
 10.2.2 Synchronous Generators 292
 10.2.3 Dynamics of Voltage Phase Angles 293
 10.2.4 Communication Network 294
 10.3 Formulation of Optimal Frequency Control 294
 10.3.1 Optimal Power-Sharing Among Controllable Generators 294
 10.3.2 Equivalent Model With Virtual Load 295
 10.4 Control Design 296
 10.4.1 Controller for Controllable Generators 296
 10.4.2 Active Power Dynamics of Uncontrollable Generators 297
 10.4.3 Excitation Voltage Dynamics of Generators 298
 10.5 Optimality and Stability 298
 10.5.1 Optimality 298
 10.5.2 Stability 300
 10.6 Implementation With Frequency Measurement 306
 10.6.1 Estimating Μ I Using Frequency Feedback 306
 10.6.2 Stability Analysis 307
 10.7 Case Studies 310
 10.7.1 Test System and Data 310
 10.7.2 Performance Under Small Disturbances 312
 10.7.2.1 Equilibrium and its Optimality 312
 10.7.2.2 Performance of Frequency Dynamics 313
 10.7.3 Performance Under Large Disturbances 316
 10.7.3.1 Generator Tripping 317
 10.7.3.2 Short-Circuit Fault 318
 10.8 Conclusion and Notes 321
 Bibliography 322
 11 Robustness and Adaptability: Heterogeneity in Power Controls of DC Microgrids 325
 11.1 Background 325
 11.2 Network Model 328
 11.3 Optimal Power Flow of DC Networks 329
 11.3.1 OPF Model 329
 11.3.2 Uniqueness of Optimal Solution 331
 11.4 Control Design 334
 11.4.1 Distributed Optimization Algorithm 334
 11.4.2 Optimality of Equilibrium 335
 11.4.3 Convergence Analysis 338
 11.5 Implementation 344
 11.6 Case Studies 346
 11.6.1 Test System and Data 346
 11.6.2 Accuracy Analysis 348
 11.6.3 Dynamic Performance Verification 348
 11.6.4 Performance in Plug-n-play Operations 352
 11.7 Conclusion and Notes 353
 Bibliography 354
 Appendix A Typical Distributed Optimization Algorithms 357
 A.1 Consensus-Based Algorithms 357
 A.1.1 Consensus Algorithms 358
 A.1.2 Cutting-Plane Consensus Algorithm 359
 A.2 First-Order Gradient-Based Algorithms 362
 A.2.1 Dual Decomposition 363
 A.2.2 Alternating Direction Method of Multipliers 366
 A.2.3 Primal–Dual Gradient Algorithm 368
 A.2.4 Proximal Gradient Method 371
 A.3 Second-Order Newton-Based Algorithms 374
 A.3.1 Barrier Method 374
 A.3.2 Primal–Dual Interior-Point Method 375
 A.4 Zeroth-Order Online Algorithms 377
 Bibliography 379
 Appendix B Optimal Power Flow of Direct Current Networks 385
 B. 1 Mathematical Model 385
 B.. 1 Formulation 385
 B.1. 2 Equivalent Transformation 387
 B. 2 Exactness of SOC Relaxation 388
 B.2. 1 SOC Relaxation of OPF in DC Networks 388
 B.. 2 Assumptions 388
 B.2. 3 Exactness of the SOC Relaxation 389
 B.2. 4 Topological Independence 396
 B.2. 5 Uniqueness of the Optimal Solution 396
 B.2. 6 Branch Flow Model 397
 B. 3 Case Studies 399
 B.3. 1 16-Bus System 399
 B.3. 2 Larger-Scale Systems 401
 B. 4 Discussion on Line Constraints 402
 B.4. 1 OPF with Line Constraints 402
 B.4. 2 Exactness Conditions with Line Constraints 403
 B.4. 3 Constructing Approximate Optimal Solutions 406
 B.4.3. 1 Direct Construction Method 407
 B.4.3. 2 Slack Variable Method 408
 Bibliography 409
 Index 411