Methods for Teaching Science as Inquiry / Edition 10

Paperback (Print)
Rent
Rent from BN.com
$28.49
(Save 75%)
Est. Return Date: 06/18/2014
Buy New
Buy New from BN.com
$98.52
Used and New from Other Sellers
Used and New from Other Sellers
from $81.70
Usually ships in 1-2 business days
(Save 29%)
Other sellers (Paperback)
  • All (10) from $81.70   
  • New (5) from $103.09   
  • Used (5) from $81.70   

Overview


Accountable Inquiry

Inquiry-based teaching is central to the National science Education Standards (NSES) and Benchmarks for Scientific Literacy, and research has proven that an inquiry approach to science teaching motivates and engates every type of student. Methods for Teaching Science as Inquiry provides a clear, easy-to-follow approach to inquiry, using the 5-E Learning Cycle model of instruction (Engage, Explore, Explain, Elaborate, Evaluate). This book is derived from Teaching Science as Inquiry, which has become the leanding book on the market!

New to this edition:

  • Chapter 6, Assessing Science Learning, includes a new section on Science Standards and Statewide Tests which helps teachers understand the relationship between standardized test items and the conceptual knowledge and inquiry skills students need to learn. (See pages 176-181)
  • Updated, research-based coverage on meeting the needs of English Language Learners and strategies for reaching diverse learners helps prepare teacher for the realities of today's classrooms. (See pages 267-271)
  • Margin notes link readers to activities that model standards-based inquiry and developmentally appropriate science content. (See page 5 and 15)
  • Integration with MyEducationLab gives readers access to video clips, journal articles, examples of student work, and assessments to gauge understanding of chapter content. (See the MyEducationLab walk-through in the preface or go to www.myeducationlab.com.)

Praise for Teaching Science as Inquiry:

"This book is easily the best available. It gives the clearest description of the curriculum models, and the chapter on questioning is splendid...I have used it with undergraduates, graduates, beginning methods, advanced methods, television classes, and on campus classes. It has been a valuable resource for me and my students."
WENDY FRAZIER, George Mason University

"...this is an execellent text and one that I would use in teaching pre-service teacher of elementary and middle-level science."
JIM ELLIS, The University of Kansas

"...[the] content of the textbook is very informative and well organized with tables and charts. [Teaching as Inquiry] has many strengths."
SENAY YASAR, Arizona State University

To order this book WITHOUT MyEducationLab use this ISBN: 9780132353298. To order this book WITH MyEducationLab use this ISBN: 9780137147946.

Read More Show Less

Product Details

  • ISBN-13: 9780132353298
  • Publisher: Pearson
  • Publication date: 3/24/2008
  • Series: MyEducationLab Series
  • Edition number: 10
  • Pages: 312
  • Sales rank: 639,286
  • Product dimensions: 7.90 (w) x 9.90 (h) x 0.50 (d)

Read an Excerpt

PREFACE:

Preface

THE EIGHTH EDITION of Method for Teaching Science as Inquiry introduces prospective and experienced teachers to the science content, teaching strategies, and inquiry activities necessary to teach science in contemporary ways. In addition, the infusion of the National Science Education Standard in this edition will provide all readers a useful framework for making instructional decisions.

Although several approaches to teaching and learning science are described in this text, the main focus is on inquiry. Inquiry is both a way to teach and a way for students to investigate the world. Doing inquiry means asking simple but thoughtful questions about the world and engaging students to answer them. Inquiry incorporates the use of hands-on and process-oriented activities for the benefit of knowledge construction. Inquiry encourages students to connect their prior knowledge to observations and to use their observations as evidence to increase personal scientific knowledge. In this instructional environment, teachers act as facilitators of learning rather than "bankers" who have stored knowledge that they transfer into students' heads.

New to the Eighth Edition

Those of you familiar with the text will notice that it has a new title. Each preceding edition was entitled Teaching Modern Science and walked readers through the process of guiding students toward the discovery of science knowledge. Guided discovery is a more programmed way of teaching science using teacher-directed questioning. However, recent advances in cognitive learning theory have lead to national reform in education. From cognitivelearning research, educators realize the need for students to be actively engaged in their own construction of knowledge, but teachers must be prepared to "invent" concepts and principles for students to use. Inquiry learning and inquiry teaching go together. Thus, the revision of this text provides the knowledge and skills necessary to teach from an inquiry-oriented perspective.

Methods for Teaching Science as Inquiry mirrors national reform in another way as well. Educational reform has led to the development of common instructional goals for every content area of education throughout the nation. Prodigious efforts of the American Association for the Advancement of Science (AAAS), the National Research Council, and other groups in the 1990s have provided a coherent vision and research-based framework for a new era of science education. As a result, the National Science Education Standards (NSES) were created to coordinate the goals and objectives for science instruction. The National Science Education Standards provide directives not only for the setting up of district-wide science programs but also for the science concepts that are to be covered at each grade level. These standards are not rigid but rather provide you, and the school system in which you teach, concrete guidelines for exposing students to science experiences throughout their schooling. Different from the hit-or-miss approach of the past, the science goals and objectives for elementary and middle schools are clear. Throughout this text, you will have an opportunity to become familiar with the National Science Education Standards as the text is woven around them. Look for citations to the National Research Council and the symbol NSES passages within the text and in margin notes to find your responsibilities for using them in all aspects of science teaching and learning.

Other significant changes within this edition include:

  • A new chapter, Processes of Science and Scientific Inquiry, describes how to use the processes of science within the context of scientific inquiry.
  • More science activities and science lessons integrated into chapters act as exemplary models describing how to plan for instruction within the context of inquiry.
  • Practical suggestions for building learning communities are included throughout the text and describe cooperative grouping strategies and ideas for encouraging the exchange of ideas among students during inquiry experiences.
  • Connections between science, math, social studies, and language arts are explained extensively with new and exciting concrete ideas and strategies in Chapter 8.
  • Threaded throughout the text are references to the use of the Companion Website and URLs that identify how to utilize technology and the Internet in science teaching. Chapter 10 groups together strategies for the use of advanced technology.
  • Instructional models for continuing professional development are illustrated in Video Case Studies. Nine elementary and middle school teachers reflect on their growth as science teachers as they teach their own classes, work. with science mentors, and explore how they could teach science better. A different Video Case Study is featured in each chapter of the text.

The Video Case Studies

Because the Video Case Studies in this text are a unique feature, it is important to explain not only the predictable format for the use of these videos but also how to get the most out of using those case studies to advance your own learning.

The Value of Video Case Studies. In their practical guide Designing Professional Development for Teachers of Science and Mathematics, Susan Loucks-Horsley, Peter Hewson, Nancy Love, and Katherine Stiles (1998) identified the case study method as one of the most important strategies for professional development. The process of observing and reflecting on teachers' actions, and on students' learning and thinking, can lead to changes in the knowledge, beliefs, attitudes, and ultimately the practice of pre-service and in-service teachers. You and your colleagues can use classroom discussions about the Video Case Studies to:

  • extend and apply knowledge presented in the chapters,
  • formulate questions and ideas,
  • learn from one another,
  • become aware of alternative perspectives and strategies,
  • reflect on real problems faced by practicing teachers, and
  • increase your science knowledge, as more than 30 science topics are taught in the case studies.

Videos by Annenberg. The Video Case Studies that accompany this text are free to professors who use this text and are part of the professional library developed by Annenberg. Chosen for their value in illustrating professional development, ten video cases depict nine different teachers in three videos from Annenberg's Case Studies in Science Education series. Each video case has three modules: An Introduction to the Case, Trying New Ideas, and Reflecting and Building on Change. The three parts of each video case enable you to look in on a teacher and his or her students at intervals throughout the school year. From one segment to the next, in each case you will see how the teacher undergoes professional changes in approaching science teaching. The changes reflect the real-life experiences of teachers who see a need to improve the way they teach, meet with a teaching mentor to gather ideas, and implement ways to improve their science teaching practice. As a result of this work, you will witness not only a teacher's growing confidence and capability in science teaching but also a growing involvement of students in their own science learning.

Chapter Video Guides. A video guide is found in each chapter. Within each two-page or four-page guide are Questions for Reflection to help you and others increase your involvement with the Video Case Study and look for changes in the knowledge, beliefs, and instructional plans and approaches of the featured teacher. Included in most of the chapter video guides are examples of strategies you may want to implement in your own science teaching practice.

For optimum benefit while watching the video segments, participants must have a "shared commitment to improving their teaching practice, a willingness to share and critically discuss aspects of practice and curiosity about important assumptions that underlie teaching and learning" (Loucks-Horsley et al., 1998, pp. 108-109). A knowledgeable and experienced facilitator can enhance the case discussions. The role of the facilitator is to help participants

  • understand the situation and issues in the case,
  • focus on the thinking of students in the video classrooms,
  • examine the approach taken by the teacher,
  • reflect on the theoretical foundation for the teacher's actions, and
  • consider alternative actions and their consequences (Loucks-Horsley et al., 1998).

Although these Video Case Studies are not intended to replace actual classroom visits, they can provide a more focused picture of specific aspects of teaching and learning than might be obtained from real-time observations of classes.

The Companion Website

A Companion Website designed for student and professor use accompanies this text. The Syllabus Manager allows professors the opportunity to place the class syllabus online. This enables students to also see a course calendar, chapter assignments, and course changes as they are posted. In addition, content information is organized as chapter-by-chapter features and provides you with study guide questions and self-assessment tests so you can check your own understanding of teaching science in an ongoing way. Links on the website navigation bar can transport you to

  • focus questions you can use as a study guide,
  • online quizzes that are self-pacing and self-evaluating, with scores e-mailed to professors if desired,
  • Web destinations and links to wonderful science resources on the Internet, and
  • a Message Board where you can engage in meaningful discourse about science teaching and learning issues with others taking the course.

Unique to this Companion Website are virtual classroom experiences linked to Chapters 2, 3, 4, and 8, set up as video essays. They provide an opportunity for you to see how well you understand the components of good science teaching. Videostreaming on the video essays illustrates the various teaching strategies of classroom teachers teaching properties of air in grade 1, balance beams in grade 4, and pendulums in grade 8. As you begin to understand the components of good science instruction you can visit the video essays on the Companion Website and test yourself on which strategies exemplify effective science teaching. You should also see opportunities for improving each science lesson. As you become more familiar with the rudiments of effective science instruction, you may choose to revisit these virtual sites and reassess your understanding of science teaching and learning.

Margin notes integrated in the text and designated with a logo that will prompt you to visit the Companion Website to utilize its features in your course study.

Acknowledgments

To be meaningful, educational visions have to be practically implemented in teacher education and staff development programs, and most important, in our nation's classrooms. Our goal in writing and revising this textbook has been to present the new vision of science education and provide you with specific help, guidelines, and examples as you prepare to teach science in a new millennium.

The reviewers for the seventh edition of this text, as well as those who read and commented on the chapters in the eighth edition, have been very perceptive and insightful and have offered many comments and suggestions that, hopefully, have led to significant improvements. We acknowledge and express our gratitude to the following reviewers: Carol Brewer, The University of Montana; Rosemarie Kolstad, East Texas State University; Mark R. Malone, The University of Colorado; Richard H. Moyer, The University of Michigan-Dearborn; Michael Odell, The University of Idaho; William A. Rieck, The University of Southwestern Louisiana; Joseph D. Sharpe, Tennessee Technological University; Leone E. Snyder, Northwestern College; M. Dale Streigle, Iowa State University; and Dana L. Zeidler, The University of South Florida-Tampa.

We thank editor Linda Ashe Montgomery at Merrill Education who has provided substantive, as well as editorial, assistance throughout the writing and revision efforts. She has a great sensitivity to education issues, not only in science but in other specialized fields as well. We wish to acknowledge her contributions to this text and convey our appreciation to her.

We also wish to thank Kathy Deselle, copyeditor; Kate Nichols, designer; Mary Harlan, production editor; and Betsy Keefer, project coordinator.

Read More Show Less

Table of Contents

Chapter 1 Children, Science, and Inquiry: Some Preliminary Questions

What Does It Mean to Teach Science As Inquiry?

Why Should Children Learn Science?

U.S. Science Education: Where Have We Been, Where Are We Now, Where Are We Going?

What Shall We Teach in Science?

Science and Technology

Teachers and Inquiry

Chapter 2 Processes and Strategies for Inquiry

Processes of Science

Descriptive, Classificatory, and Experimental Investigations

Teachers, Children, and Inquiry

Chapter 3 Learning Science with Understanding

The New View of Learning

Enhancing the Understanding of Science

Children's Alternative Conceptions and Science Learning

Development, Learning, and Science Teaching

Chapter 4 Teaching Science for Understanding: The 5-E Model of Instruction

Inquiry Instruction

The 5-E Model of Science Instruction

Guided Discovery, Textbook, and Direct Instruction

Approaches to Teaching Science

Research on the Effectiveness of Different Approaches to Science Instruction

Selecting Instructional Approaches for Teaching Science

Chapter 5 Planning and Managing Inquiry Instruction

Planning Science Lessons

Managing Inquiry Instruction and Learning

Chapter 6 Assessing Science Learning

Assessment and Evaluation

Assessment and Inquiry Science

Informal, Traditional, and Performance Assessments

Fitting Assessment Methods to Learning Objectives

Examples of Informal Assessments

Examples of Performance Assessment

Examples of Traditional Assessment Items

Characteristics of Items on Statewide Tests of Science

Chapter 7 Effective Questioning

Questioning: An Essential Tool for Teachers

Questioning to Guide Inquiry Discussions

Responding to Student Ideas

Questioning Strategies in the Classroom: Properties of Air in First Grade

Some Considerations in Questioning

Chapter 8 Technology Tools and Resources for Inquiry Science

Educational Technology

The Internet as a Technology Resource for Inquiry Science

Use Commercially Available Multimedia Packages to Enhance Science Inquiry

Use Instructional Software Packages

Use Computer-Based Laboratories to Collect and Process Data

Use Spreadsheets to Organize and Analyze Data

Communicate Through Multimedia Presentations

Managing Educational Technology in the Science Classroom

Take the Plunge-Join the Information Age

Chapter 9 Connecting Science With Other Subjects

Connecting Science and Mathematics

Connecting Science and Literacy

Connecting Science and Social Studies

Chapter 10 Science for All Learners

Students with Special Learning Needs

Science for Gifted and Talented Students

Science for Students from Linguistically and Culturally Diverse Backgrounds

Read More Show Less

Preface

Preface

THE EIGHTH EDITION of Method for Teaching Science as Inquiry introduces prospective and experienced teachers to the science content, teaching strategies, and inquiry activities necessary to teach science in contemporary ways. In addition, the infusion of the National Science Education Standard in this edition will provide all readers a useful framework for making instructional decisions.

Although several approaches to teaching and learning science are described in this text, the main focus is on inquiry. Inquiry is both a way to teach and a way for students to investigate the world. Doing inquiry means asking simple but thoughtful questions about the world and engaging students to answer them. Inquiry incorporates the use of hands-on and process-oriented activities for the benefit of knowledge construction. Inquiry encourages students to connect their prior knowledge to observations and to use their observations as evidence to increase personal scientific knowledge. In this instructional environment, teachers act as facilitators of learning rather than "bankers" who have stored knowledge that they transfer into students' heads.

New to the Eighth Edition

Those of you familiar with the text will notice that it has a new title. Each preceding edition was entitled Teaching Modern Science and walked readers through the process of guiding students toward the discovery of science knowledge. Guided discovery is a more programmed way of teaching science using teacher-directed questioning. However, recent advances in cognitive learning theory have lead to national reform in education. From cognitive learningresearch, educators realize the need for students to be actively engaged in their own construction of knowledge, but teachers must be prepared to "invent" concepts and principles for students to use. Inquiry learning and inquiry teaching go together. Thus, the revision of this text provides the knowledge and skills necessary to teach from an inquiry-oriented perspective.

Methods for Teaching Science as Inquiry mirrors national reform in another way as well. Educational reform has led to the development of common instructional goals for every content area of education throughout the nation. Prodigious efforts of the American Association for the Advancement of Science (AAAS), the National Research Council, and other groups in the 1990s have provided a coherent vision and research-based framework for a new era of science education. As a result, the National Science Education Standards (NSES) were created to coordinate the goals and objectives for science instruction. The National Science Education Standards provide directives not only for the setting up of district-wide science programs but also for the science concepts that are to be covered at each grade level. These standards are not rigid but rather provide you, and the school system in which you teach, concrete guidelines for exposing students to science experiences throughout their schooling. Different from the hit-or-miss approach of the past, the science goals and objectives for elementary and middle schools are clear. Throughout this text, you will have an opportunity to become familiar with the National Science Education Standards as the text is woven around them. Look for citations to the National Research Council and the symbol NSES passages within the text and in margin notes to find your responsibilities for using them in all aspects of science teaching and learning.

Other significant changes within this edition include:

  • A new chapter, Processes of Science and Scientific Inquiry, describes how to use the processes of science within the context of scientific inquiry.
  • More science activities and science lessons integrated into chapters act as exemplary models describing how to plan for instruction within the context of inquiry.
  • Practical suggestions for building learning communities are included throughout the text and describe cooperative grouping strategies and ideas for encouraging the exchange of ideas among students during inquiry experiences.
  • Connections between science, math, social studies, and language arts are explained extensively with new and exciting concrete ideas and strategies in Chapter 8.
  • Threaded throughout the text are references to the use of the Companion Website and URLs that identify how to utilize technology and the Internet in science teaching. Chapter 10 groups together strategies for the use of advanced technology.
  • Instructional models for continuing professional development are illustrated in Video Case Studies. Nine elementary and middle school teachers reflect on their growth as science teachers as they teach their own classes, work. with science mentors, and explore how they could teach science better. A different Video Case Study is featured in each chapter of the text.

The Video Case Studies

Because the Video Case Studies in this text are a unique feature, it is important to explain not only the predictable format for the use of these videos but also how to get the most out of using those case studies to advance your own learning.

The Value of Video Case Studies. In their practical guide Designing Professional Development for Teachers of Science and Mathematics, Susan Loucks-Horsley, Peter Hewson, Nancy Love, and Katherine Stiles (1998) identified the case study method as one of the most important strategies for professional development. The process of observing and reflecting on teachers' actions, and on students' learning and thinking, can lead to changes in the knowledge, beliefs, attitudes, and ultimately the practice of pre-service and in-service teachers. You and your colleagues can use classroom discussions about the Video Case Studies to:

  • extend and apply knowledge presented in the chapters,
  • formulate questions and ideas,
  • learn from one another,
  • become aware of alternative perspectives and strategies,
  • reflect on real problems faced by practicing teachers, and
  • increase your science knowledge, as more than 30 science topics are taught in the case studies.

Videos by Annenberg. The Video Case Studies that accompany this text are free to professors who use this text and are part of the professional library developed by Annenberg. Chosen for their value in illustrating professional development, ten video cases depict nine different teachers in three videos from Annenberg's Case Studies in Science Education series. Each video case has three modules: An Introduction to the Case, Trying New Ideas, and Reflecting and Building on Change. The three parts of each video case enable you to look in on a teacher and his or her students at intervals throughout the school year. From one segment to the next, in each case you will see how the teacher undergoes professional changes in approaching science teaching. The changes reflect the real-life experiences of teachers who see a need to improve the way they teach, meet with a teaching mentor to gather ideas, and implement ways to improve their science teaching practice. As a result of this work, you will witness not only a teacher's growing confidence and capability in science teaching but also a growing involvement of students in their own science learning.

Chapter Video Guides. A video guide is found in each chapter. Within each two-page or four-page guide are Questions for Reflection to help you and others increase your involvement with the Video Case Study and look for changes in the knowledge, beliefs, and instructional plans and approaches of the featured teacher. Included in most of the chapter video guides are examples of strategies you may want to implement in your own science teaching practice.

For optimum benefit while watching the video segments, participants must have a "shared commitment to improving their teaching practice, a willingness to share and critically discuss aspects of practice and curiosity about important assumptions that underlie teaching and learning" (Loucks-Horsley et al., 1998, pp. 108-109). A knowledgeable and experienced facilitator can enhance the case discussions. The role of the facilitator is to help participants

  • understand the situation and issues in the case,
  • focus on the thinking of students in the video classrooms,
  • examine the approach taken by the teacher,
  • reflect on the theoretical foundation for the teacher's actions, and
  • consider alternative actions and their consequences (Loucks-Horsley et al., 1998).

Although these Video Case Studies are not intended to replace actual classroom visits, they can provide a more focused picture of specific aspects of teaching and learning than might be obtained from real-time observations of classes.

The Companion Website

A Companion Website designed for student and professor use accompanies this text. The Syllabus Manager allows professors the opportunity to place the class syllabus online. This enables students to also see a course calendar, chapter assignments, and course changes as they are posted. In addition, content information is organized as chapter-by-chapter features and provides you with study guide questions and self-assessment tests so you can check your own understanding of teaching science in an ongoing way. Links on the website navigation bar can transport you to

  • focus questions you can use as a study guide,
  • online quizzes that are self-pacing and self-evaluating, with scores e-mailed to professors if desired,
  • Web destinations and links to wonderful science resources on the Internet, and
  • a Message Board where you can engage in meaningful discourse about science teaching and learning issues with others taking the course.

Unique to this Companion Website are virtual classroom experiences linked to Chapters 2, 3, 4, and 8, set up as video essays. They provide an opportunity for you to see how well you understand the components of good science teaching. Videostreaming on the video essays illustrates the various teaching strategies of classroom teachers teaching properties of air in grade 1, balance beams in grade 4, and pendulums in grade 8. As you begin to understand the components of good science instruction you can visit the video essays on the Companion Website and test yourself on which strategies exemplify effective science teaching. You should also see opportunities for improving each science lesson. As you become more familiar with the rudiments of effective science instruction, you may choose to revisit these virtual sites and reassess your understanding of science teaching and learning.

Margin notes integrated in the text and designated with a logo that will prompt you to visit the Companion Website to utilize its features in your course study.

Acknowledgments

To be meaningful, educational visions have to be practically implemented in teacher education and staff development programs, and most important, in our nation's classrooms. Our goal in writing and revising this textbook has been to present the new vision of science education and provide you with specific help, guidelines, and examples as you prepare to teach science in a new millennium.

The reviewers for the seventh edition of this text, as well as those who read and commented on the chapters in the eighth edition, have been very perceptive and insightful and have offered many comments and suggestions that, hopefully, have led to significant improvements. We acknowledge and express our gratitude to the following reviewers: Carol Brewer, The University of Montana; Rosemarie Kolstad, East Texas State University; Mark R. Malone, The University of Colorado; Richard H. Moyer, The University of Michigan-Dearborn; Michael Odell, The University of Idaho; William A. Rieck, The University of Southwestern Louisiana; Joseph D. Sharpe, Tennessee Technological University; Leone E. Snyder, Northwestern College; M. Dale Streigle, Iowa State University; and Dana L. Zeidler, The University of South Florida-Tampa.

We thank editor Linda Ashe Montgomery at Merrill Education who has provided substantive, as well as editorial, assistance throughout the writing and revision efforts. She has a great sensitivity to education issues, not only in science but in other specialized fields as well. We wish to acknowledge her contributions to this text and convey our appreciation to her.

We also wish to thank Kathy Deselle, copyeditor; Kate Nichols, designer; Mary Harlan, production editor; and Betsy Keefer, project coordinator.

Read More Show Less

Customer Reviews

Average Rating 3
( 1 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(1)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Posted May 6, 2010

    Not for high school students

    I purchased this book based on an on-line description with the intention of using it for my high school chemistry classes. Upon reading the summary on the back of the book I found the focus with younger students and upon looking inside found this definitely to be true. If you teach middle school, look it over!

    Was this review helpful? Yes  No   Report this review
Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)