Metric Structures in Differential Geometry
This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid background in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov­ ered, culminating in Stokes' theorem together with some applications. The students' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv­ alence classes of functions, but later that the tangent space of ffi.n is "the same" n as ffi. . We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle.
1100017756
Metric Structures in Differential Geometry
This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid background in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov­ ered, culminating in Stokes' theorem together with some applications. The students' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv­ alence classes of functions, but later that the tangent space of ffi.n is "the same" n as ffi. . We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle.
69.99 In Stock
Metric Structures in Differential Geometry

Metric Structures in Differential Geometry

by Gerard Walschap
Metric Structures in Differential Geometry

Metric Structures in Differential Geometry

by Gerard Walschap

Paperback(Softcover reprint of the original 1st ed. 2004)

$69.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid background in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov­ ered, culminating in Stokes' theorem together with some applications. The students' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv­ alence classes of functions, but later that the tangent space of ffi.n is "the same" n as ffi. . We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle.

Product Details

ISBN-13: 9781441919137
Publisher: Springer New York
Publication date: 11/29/2010
Series: Graduate Texts in Mathematics , #224
Edition description: Softcover reprint of the original 1st ed. 2004
Pages: 229
Product dimensions: 6.10(w) x 9.25(h) x 0.24(d)

Table of Contents

1. Differentiable Manifolds.- 1. Basic Definitions.- 2. Differentiable Maps.- 3. Tangent Vectors.- 4. The Derivative.- 5. The Inverse and Implicit Function Theorems.- 6. Submanifolds.- 7. Vector Fields.- 8. The Lie Bracket.- 9. Distributions and Frobenius Theorem.- 10. Multilinear Algebra and Tensors.- 11. Tensor Fields and Differential Forms.- 12. Integration on Chains.- 13. The Local Version of Stokes’ Theorem.- 14. Orientation and the Global Version of Stokes’ Theorem.- 15. Some Applications of Stokes’ Theorem.- 2. Fiber Bundles.- 1. Basic Definitions and Examples.- 2. Principal and Associated Bundles.- 3. The Tangent Bundle of Sn.- 4. Cross-Sections of Bundles.- 5. Pullback and Normal Bundles.- 6. Fibrations and the Homotopy Lifting/Covering Properties.- 7. Grassmannians and Universal Bundles.- 3. Homotopy Groups and Bundles Over Spheres.- 1. Differentiable Approximations.- 2. Homotopy Groups.- 3. The Homotopy Sequence of a Fibration.- 4. Bundles Over Spheres.- 5. The Vector Bundles Over Low-Dimensional Spheres.- 1. Connections on Vector Bundles.- 4. Connections and Curvature.- 2. Covariant Derivatives.- 3. The Curvature Tensor of a Connection.- 4. Connections on Manifolds.- 5. Connections on Principal Bundles.- 5. Metric Structures.- 1. Euclidean Bundles and Riemannian Manifolds.- 2. Riemannian Connections.- 3. Curvature Quantifiers.- 4. Isometric Immersions.- 5. Riemannian Submersions.- 6. The Gauss Lemma.- 7. Length-Minimizing Properties of Geodesics.- 8. First and Second Variation of Arc-Length.- 9. Curvature and Topology.- 10. Actions of Compact Lie Groups.- 6. Characteristic Classes.- 1. The Weil Homomorphism.- 2. Pontrjagin Classes.- 3. The Euler Class.- 4. The Whitney Sum Formula for Pontrjagin and Euler Classes.- 5. Some Examples.- 6. The Unit SphereBundle and the Euler Class.- 7. The Generalized Gauss-Bonnet Theorem.- 8. Complex and Symplectic Vector Spaces.- 9. Chern Classes.
From the B&N Reads Blog

Customer Reviews