Microwave Filters for Communication Systems: Fundamentals, Design and Applications

Overview

There have been significant advances in the synthesis and physical realization of microwave filter networks, but until now, no book has provided a coherent and readable description of system requirements and constraints, fundamental considerations in theory and design, up-to-date synthesis techniques, or EM-based design tools. Microwave Filters for Communication Systems fills the need for such a book, providing comprehensive coverage of microwave filter design and applications ...
See more details below
This Hardcover is Not Available through BN.com
Sending request ...

Overview

There have been significant advances in the synthesis and physical realization of microwave filter networks, but until now, no book has provided a coherent and readable description of system requirements and constraints, fundamental considerations in theory and design, up-to-date synthesis techniques, or EM-based design tools. Microwave Filters for Communication Systems fills the need for such a book, providing comprehensive coverage of microwave filter design and applications for communication systems.

Distinct features of the book include: System considerations in filter design, General formulation and synthesis of filter functions, Synthesis techniques for low-pass prototype filters, Application of modern EM-based design techniques, Design and tradeoffs of various multiplexer configurations, Computer-aided filter tuning, High-power considerations for terrestrial and space applications. This topical book provides students and practitioners with a strong theoretical understanding of filter design, as well as the EM-based tools being used in the optimization of microwave filter and multiplexing networks.

About the Author:
Richard J. Cameron is the retired technical director of COM DEV Europe, Visiting Professor at the University of Leeds (UK), and is a Fellow of IEE and IEEE

About the Author:
Dr. Chandra M. Kudsia is Adjunct Professor at the University of Waterloo, a Fellow of IEEE, AIAA and EIC, and the retired chief scientist of COM DEV Space Group

About the Author:
Dr. Raafat R. Mansour is a Professor at the University of Waterloo, former director of R&D at COM DEV International, and is a Fellow of IEEE

Read More Show Less

Editorial Reviews

From the Publisher
"Provides by far the most comprehensive coverage available of powerful design techniques involving the use of coupling matrices. This is a book that every microwave filter design specialist will want to study and have on their bookshelf. It could also be the text for an advanced course on filter design." (IEEE Microwave Magazine, October 2008)
Read More Show Less

Product Details

  • ISBN-13: 9781118274347
  • Publisher: Wiley
  • Publication date: 12/7/2015
  • Edition number: 2
  • Pages: 900

Meet the Author

Richard J. Cameron is the retired technical director of COM DEV Europe, Visiting Professor at the University of Leeds (UK), and is a Fellow of IEE and IEEE.

Dr. Chandra M. Kudsia is Adjunct Professor at the University of Waterloo,a Fellow of IEEE, AIAA and EIC, and the retired chief scientist of COM DEV Space Group.

Dr. Raafat R. Mansour is a Professor at the University of Waterloo, former director of R&D at COM DEV International, and is a Fellow of IEEE.

Read More Show Less

Table of Contents


Foreword     xxi
Preface     xxiii
Acknowledgments     xxxi
Radio Frequency (RF) Filter Networks for Wireless Communications-The System Perspective     1
Introduction to a Communication System, Radio Spectrum, and Information     2
Model of a Communication System     2
Building Blocks of a Communication System     3
Radio Spectrum and its Utilization     7
Radio Propagation at Microwave Frequencies     7
Radio Spectrum as a Natural Resource     9
Concept of Information     10
Communication Channel and Link Budgets     12
Signal Power in a Communication Link     12
Transmit and Receive Antennas     13
Noise in a Communication Channel     18
Noise in Communication Systems     18
Adjacent Copolarized Channel Interference     18
Adjacent Cross-Polarized Channel Interference     19
Multipath Interference     19
Thermal Noise     20
Noise in Cascaded Networks     26
Intermodulation (IM) Noise     29
Distortion Due to Channel Imperfections     31
RF Link Design     34
Modulation-Demodulation Schemes in a Communication System     37
Amplitude Modulation     37
Formation of a Baseband Signal     39
Angle-Modulated Signals     40
Comparison of FM and AM Systems     43
Digital Transmission     46
Sampling     46
Quantization     47
PCM Systems     47
Quantization Noise in PCM Systems     48
Error Rates in Binary Transmission     49
Digital Modulation and Demodulation Schemes     50
Advanced Modulation Schemes     53
Quality of Service and S/N Ratio     58
Impact of System Design on the Requirements of Filter Networks     58
Communication Channes in a Satellite System     58
Receive Section     61
The Channelizer Section     62
High-Power Amplifiers (HPAs)     64
Transmitter Section Architecture     67
RF Filters in Cellular Systems     71
Impact of System Requirements on RF Filter Specifications     74
Impact of Satellite and Cellular Communications on Filter Technology     77
Summary     78
References     78
Intermodulation Distortion Summary     80
Fundamentals of Circuit Theory Approximation      83
Linear Systems     83
Concept of Linearity     84
Classification of Systems     84
Time-Invariant and Time-Variant Systems     85
Lumped and Distributed Systems     85
Instantaneous and Dynamic Systems     85
Analog and Digital Systems     85
Evolution of Electrical Circuits-A Historical Perspective     86
Circuit Elements     86
Network Equation of Linear Systems in the Time Domain     87
Network Equation of Linear Systems in the Frequency-Domain Exponential Driving Function     89
Complex Frequency Variable     90
Transfer Function     91
Signal Representation by Continuous Exponentials     92
Transfer Functions of Electrical Networks     92
Steady-State Response of Linear Systems to Sinusoidal Excitations     93
Circuit Theory Approximation     94
Summary     96
References     96
Characterization of Lossless Lowpass Prototype Filter Functions     97
The Ideal Filter     97
Distortionless Transmission     97
Maximum Power Transfer in Two-Port Networks     98
Characterization of Polynomial Functions for Doubly Terminated Lossless Lowpass Prototype Filter Networks     99
Reflection and Transmission Coefficients     101
Normalization of the Characteristic Polynomials     104
Characteristic Polynomials for Idealized Lowpass Prototype Networks     105
Lowpass Prototype Characteristics     107
Amplitude Response     107
Phase Response     107
Phase Linearity     108
Characteristic Polynomials Versus Response Shapes     109
All-Pole Prototype Filter Functions     109
Prototype Filter Functions with Finite Transmission Zeros     109
Classical Prototype Filters     111
Maximally Flat Filters     111
Chebyshev Approximation     112
Elliptic Function Filters     115
Odd-Order Elliptic Function Filters     118
Even-Order Elliptic Function Filters     119
Filters with Transmission Zeros and a Maximally Flat Passband     121
Lineal-Phase Filters     121
Comparison of Maximally Flat, Chebyshev, and Elliptic Function Filters     122
Unified Design Chart (UDC) Relationships     123
Ripple Factor     124
Lowpass Prototype Circuit Configurations     125
Scaling of Prototype Networks     126
Frequency Response of Scaled Networks     127
Effect of Dissipation     130
Relationship of Dissipation Factor [delta] and Quality Factor Q[subscript 0]     132
Equivalent [delta] for Lowpass and Highpass Filters     134
Equivalent [delta] for Bandpass and Bandstop Filters     134
Asymmetric Response Filters     136
Positive Functions     137
Summary     140
References     141
Unified Design Charts     143
Computer-Aided Synthesis of Characteristic Polynomials     151
Objective Function and Constraints for Symmetric Lowpass Prototype Filter Networks     152
Analytic Gradients of the Objective Function     154
Gradient of the Unconstrained Objective Function     155
Gradient of the Inequality Constraint     156
Gradient of the Equality Constraint     157
Optimization Criteria for Classical Filters     158
Chebyshev Function Filters     158
Inverse Chebyshev Filters     159
Elliptic Function Filters     159
Generation of Novel Classes of Filter Functions     161
Equiripple Passbands and Stopbands     161
Nonequiripple Stopband with an Equiripple Passband     163
Asymmetric Class of Filters     163
Asymmetric Filters with Chebyshev Passband     164
Asymmetrical Filters with Arbitrary Response     166
Linear Phase Filters     168
Critical Frequencies for Selected Fitter Functions     169
Summary     169
References     170
Critical Frequencies for an Unconventional 8-Pole Filter     171
Analysis of Multiport Microwave Networks     173
Matrix Representation of Two-Port Networks     174
Impedance [Z] and Admittance [Y] Matrices     174
The [ABCD] Matrix     175
The Scattering [S] Matrix     178
The Transmission Matrix [T]     183
Analysis of Two-Port Networks     185
Cascade of Two Networks     189
Multiport Networks     198
Analysis of Multiport Networks     200
Summary     205
References     206
Synthesis of a General Class of the Chebyshev Filter Function     207
Polynomial forms of the Transfer and Reflection Parameters S[subscript 21](s) and S[subscript 11](s) for a Two-Port Network     207
Relationships Between [epsilon] and [epsilon subscript R]     215
Alternating Pole Method for Determination of the Denominator Polynomial E(s)      216
General Polynomial Synthesis Methods for Chebyshev Filter Functions     219
Polynomial Synthesis     220
Recursive Technique     225
Polynomial Forms for Symmetric and Asymmetric Filtering Functions     229
Predistorted Filter Characteristics     230
Synthesis of the Predistorted Filter Network     236
Transformation for Dual-Band Bandpass Filters     238
Summary     241
References     242
Synthesis of Network-Circuit Approach     243
Circuit Synthesis Approach     245
Buildup of [ABCD] Matrix for the Third-Degree Network     246
Network Synthesis     247
Lowpass Prototype Circuits for Coupled-Resonator Microwave Bandpass Filters     250
Synthesis of the [ABCD] Polynomials for Circuits with Inverters     251
Synthesis of the [ABCD] Polynomials for the Singly Terminated Filter Prototype     258
Ladder Network Synthesis     260
Synthesis Example of an Asymmetric (4-2) Filter Network     269
Summary     276
References     277
Coupling Matrix Synthesis of Filter Networks     279
Coupling Matrix     279
Bandpass and Lowpass Prototypes      281
Formation of the General N x N Coupling Matrix and its Analysis     282
Formation of the Coupling Matrix from the Lowpass Prototype Circuit Elements     286
Analysis of the Network Represented by the Coupling Matrix     288
Direct Analysis     291
Direct Synthesis of the Coupling Matrix     292
Direct Synthesis of the N x N Coupling Matrix     293
Coupling Matrix Reduction     295
Similarity Transformation and Annihilation f Matrix Elements     296
Synthesis of the N + 2 Coupling Matrix     303
Synthesis of the Transversal Coupling Matrix     304
Reduction of the N + 2 Transversal Matrix to the Folded Canonical Form     311
Illustrative Example     312
Summary     315
References     316
Reconfiguration of the Folded Coupling Matrix     319
Symmetric Realizations for Dual-Mode Filters     320
Sixth-Degree Filter     322
Eighth-Degree Filter     322
10th-Degree Filter     323
12th-Degree Filter     323
Asymmetric Realizations for Symmetric Characteristics     325
"Pfitzenmaier" Configurations     326
Cascaded Quartets (CQs)-Two Quartets in Cascade for Degrees 8 and Above      328
Parallel-Connected Two-Port Networks     331
Even-Mode and Odd-Mode Coupling Submatrices     335
Cul-de-Sac Configuration     337
Further Cul-de-Sac Forms     340
Sensitivity Considerations     345
Summary     345
References     347
Synthesis and Application of Extracted Pole and Trisection Elements     349
Extracted Pole Filter Synthesis     349
Synthesis of the Extracted Pole Element     350
Example of Synthesis of Extracted Pole Network     354
Analysis of the Extracted Pole Filter Network     357
Direct-Coupled Extracted Pole Filters     360
Synthesis of Bandstop Filters Using the Extracted Pole Technique     364
Direct-Coupled Bandstop Filters     366
Trisections     371
Synthesis of the Trisection-Circuit Approach     373
Cascade Trisections-Coupling Matrix Approach     379
Techniques Based on the Trisection for Synthesis of Advanced Circuits     387
Box Section and Extended Box Configurations     392
Box Sections     393
Extended Box Sections     397
Summary     401
References     402
Microwave Resonators      405
Microwave Resonator Configurations     405
Calculation of Resonant Frequency     409
Resonance Frequency of Conventional Transmission-Line Resonators     409
Resonance Frequency Calculation Using the Transverse Resonance Technique     412
Resonance Frequency of Arbitrarily Shaped Resonators     413
Resonator Unloaded Q Factor     416
Unloaded Q Factor of Conventional Resonators     418
Unloaded Q of Arbitrarily Shaped Resonators     421
Measurement of Loaded and Unloaded Q Factor     421
Summary     428
References     429
Waveguide and Coaxial Lowpass Filters     431
Commensurate-Line Building Elements     432
Lowpass Prototype Transfer Polynomials     433
Chebyshev Polynomials of the Second Kind     433
Achieser-Zolotarev Functions     436
Synthesis and Realization of the Distributed Stepped Impedance Lowpass Filter     438
Mapping the Transfer Function S[subscript 21] from the [omega] Plane to the [theta] Plane     439
Synthesis of the Stepped Impedance Lowpass Prototype Circuit     441
Realization     443
Short-Step Transformers     448
Synthesis and Realization of Mixed Lumped/Distributed Lowpass Filter     451
Formation of the Transfer and Reflection Polynomials     452
Synthesis of the Tapered-Corrugated Lowpass Prototype Circuit     454
Realization     458
Summary     466
References     466
Waveguide Realization of Single- and Dual-Mode Resonator Filters     469
Synthesis Process     470
Design of the Filter Function     471
Amplitude Optimization     471
Rejection Lobe Optimization     472
Group Delay Optimization     474
Realization and Analysis of the Microwave Filter Network     479
Dual-Mode Filters     485
Virtual Negative Couplings     486
Coupling Sign Correction     488
Dual-Mode Realizations for Some Typical Coupling Matrix Configurations     489
Folded Array     490
Pfitzenmaier Configuration     491
Propagating Forms     492
Cascade Quartet     492
Extended Box     492
Phase- and Direct-Coupled Extracted Pole Filters     494
The "Full Inductive" Dual-Mode Filter     496
Synthesis of the Equivalent Circuit     498
Summary      499
References     500
Design and Physical Realization of Coupled Resonator Filters     501
Circuit Models for Chebyshev Bandpass Filters     502
Calculation of Interresonator Coupling     507
The Use of Electric Wall and Magnetic Wall Symmetry     507
Interresonator Coupling Calculation Using S Parameters     509
Calculation of Input/Output Coupling     511
Frequency Domain Method     511
Group Delay Method     512
Design Example of Dielectric Resonator Filters Using the Coupling Matrix Model     513
Calculation of Dielectric Resonator Cavity Configuration     515
Calculation of Iris Dimensions for Interresonator Coupling     516
Calculation of Input/Output Coupling     518
Design Example of a Waveguide Iris Filter Using the Impedance Inverter Model     521
Design Example of a Microstrip Filter Using the J-Admittance Inverter Model     524
Summary     529
References     530
Advanced EM-Based Design Techniques for Microwave Filters     531
EM-Based Synthesis Techniques     532
EM-Based Optimization Techniques     532
Optimization Using an EM Simulator     534
Optimization Using Semi-EM-Based Simulator      535
Optimization Using an EM Simulator with Adaptive Frequency Sampling     537
Optimization Using EM-Based Neural Network Models     538
Optimization Using EM-Based Multidimensional Cauchy Technique     543
Optimization Using EM-Based Fuzzy Logic     544
EM-Based Advanced Design Techniques     544
Space Mapping Techniques     545
Calibrated Coarse Model (CCM) Techniques     553
Generalized Calibrated Coarse Model Technique for Filter Design     559
Summary     563
References     564
Dielectric Resonator Filters     567
Resonant Frequency Calculation in Dielectric Resonators     568
Rigorous Analyses of Dielectric Resonators     572
Mode Charts for Dielectric Resonators     574
Dielectric Resonator Filter Configurations     576
Design Considerations for Dielectric Resonator Filters     580
Achievable Filter Q Value     580
Spurious Performance of Dielectric Resonator Filters     581
Temperature Drift     582
Power Handling Capability     583
Other Dielectric Resonator Configurations     583
Cryogenic Dielectric Resonator Filters     587
Hybrid Dielectric/Superconductor Filters     589
Summary     592
References     593
Allpass Phase and Group Delay Equalizer Networks     595
Characteristics of Allpass Networks     596
Lumped-Element Allpass Networks     597
Resistively Terminated Symmetric Lattice Networks     599
Network Realizations     601
Microwave Allpass Networks     603
Physical Realization of Allpass Networks     608
Transmission-Type Equalizers     609
Reflection-Type Allpass Networks     609
Synthesis of Reflection-Type Allpass Networks     610
Practical Narrowband Reflection-Type Allpass Networks     612
C-Section Allpass Equalizer in Waveguide Structure     613
D-Section Allpass Equalizer in Waveguide Structure     615
Narrowband TEM Reactance Networks     615
Optimization Criteria for Allpass Networks     616
Effect of Dissipation     620
Dissipation Loss of a Lumped-Element First-Order Allpass Equalizer     620
Dissipation Loss of a Second-Order Lumped Equalizer     621
Effect of Dissipation in Distributed Allpass Networks     621
Equalization Tradeoffs     622
Summary      623
References     623
Multiplexer Theory and Design     625
Background     625
Multiplexer Configurations     627
Hybrid Coupled Approach     627
Circulator-Coupled Approach     629
Directional Filter Approach     630
Manifold-Coupled Approach     630
RF Channelizers (Demultiplexers)     632
Hybrid Branching Network     633
Circulator-Coupled MUX     634
En Passant Distortion     636
RF Combiners     638
Circulator-Coupled MUX     640
Hybrid-Coupled Filter Combiner Module (HCFM) Multiplexer     640
Directional Filter Combiner     643
Manifold Multiplexer     645
Transmit-Receive Diplexers     661
Internal Voltage Levels in Tx/Rx Diplexer Filters     665
Summary     668
References     669
Computer-Aided Diagnosis and Tuning of Microwave Filters     671
Sequential Tuning of Coupled Resonator Filters     672
Computer-Aided Tuning Based on Circuit Model Parameter Extraction     678
Computer-Aided Tuning Based on Poles and Zeros of the Input Reflection Coefficient     683
Time-Domain Tuning      687
Time-Domain Tuning of Resonator Frequencies     688
Time-Domain Tuning of Interresonator Coupling     689
Time-Domain Response of a Golden Filter     691
Filter Tuning Based on Fuzzy Logic Techniques     692
Description of Fuzzy Logic Systems     693
Steps in Building the FL System     694
Comparison Between Boolean Logic and Fuzzy Logic     697
Applying Fuzzy Logic to Filter Tuning     700
Automated Setups for Filter Tuning     703
Summary     706
References     707
High-Power Considerations in Microwave Filter Networks     711
Background     711
High-Power Requirements in Wireless Systems     712
High-Power Amplifiers (HPAs)     713
High-Power Breakdown Phenomena     714
Gaseous Breakdown     715
Mean Free Path     715
Diffusion     716
Attachment     716
Breakdown in Air     716
Critical Pressure     717
Power Rating of Waveguides and Coaxial Transmission Lines     719
Derating Factors     720
Impact of Thermal Dissipation on Power-Rating     721
High-Power Bandpass Filters      722
Bandpass Filters Limited by Thermal Dissipation     723
Bandpass Filters Limited by Voltage Breakdown     724
Filter Prototype Network     724
Lumped To Distributed Scaling     725
Resonator Voltages from Prototype Network     726
Example and Verification Via FEM Simulation     727
Example of High Voltages in a Multiplexer     729
Multipaction Breakdown     730
Dependence on Vacuum Environment     730
Dependence on Applied RF Voltage     730
Dependence on f x d Product     731
Dependence on Surface Conditions of Materials     732
Detection and Prevention of Multipaction     732
Design Margins in Multipaction     733
Multipactor Breakdown Levels     737
Passive Intermodulation (PIM) Consideration for High-Power Equipment     739
PIM Measurement     740
PIM Control Guidelines     741
Summary     742
References     743
Appendix A     745
Appendix B     747
Appendix C     749
Appendix D     751
Index     753
Read More Show Less

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)