MIMO-OFDM for LTE, WiFi and WiMAX: Coherent versus Non-coherent and Cooperative Turbo Transceivers / Edition 1

MIMO-OFDM for LTE, WiFi and WiMAX: Coherent versus Non-coherent and Cooperative Turbo Transceivers / Edition 1

by Lajos L. Hanzo, Yosef Akhtman, Li Wang, Ming Jiang
     
 

View All Available Formats & Editions

ISBN-10: 0470686693

ISBN-13: 9780470686690

Pub. Date: 12/21/2010

Publisher: Wiley

MIMO-OFDM for LTE, WIFI and WIMAX: Coherent versus Non-Coherent and Cooperative Turbo-Transceivers provides an up-to-date portrayal of wireless transmission based on OFDM techniques augmented with Space-Time Block Codes (STBCs) and Spatial-Division Multiple Access (SDMA). The volume also offers an in-depth treatment of cutting-edge Cooperative

Overview

MIMO-OFDM for LTE, WIFI and WIMAX: Coherent versus Non-Coherent and Cooperative Turbo-Transceivers provides an up-to-date portrayal of wireless transmission based on OFDM techniques augmented with Space-Time Block Codes (STBCs) and Spatial-Division Multiple Access (SDMA). The volume also offers an in-depth treatment of cutting-edge Cooperative Communications.

This monograph collates the latest techniques in a number of specific design areas of turbo-detected MIMO-OFDM wireless systems. As a result a wide range of topical subjects are examined, including channel coding and multiuser detection (MUD), with a special emphasis on optimum maximum-likelihood (ML) MUDs, reduced-complexity genetic algorithm aided near-ML MUDs and sphere detection. The benefits of spreading codes as well as joint iterative channel and data estimation are only a few of the radical new features of the book.

Also considered are the benefits of turbo and LDPC channel coding, the entire suite of known joint coding and modulation schemes, space-time coding as well as SDM/SDMA MIMOs within the context of various application examples. The book systematically converts the lessons of Shannon's information theory into design principles applicable to practical wireless systems; the depth of discussions increases towards the end of the book.

  • Discusses many state-of-the-art topics important to today's wireless communications engineers.
  • Includes numerous complete system design examples for the industrial practitioner.
  • Offers a detailed portrayal of sphere detection.
  • Based on over twenty years of research into OFDM in the context of various applications, subsequently presenting comprehensive bibliographies.

Product Details

ISBN-13:
9780470686690
Publisher:
Wiley
Publication date:
12/21/2010
Series:
Wiley - IEEE Series, #9
Pages:
692
Product dimensions:
6.40(w) x 9.90(h) x 1.60(d)

Table of Contents

About the Authors.

OtherWiley and IEEE Press Books on Related Topics.

Acknowledgments.

Preface.

List of Symbols.

1 Introduction to OFDM and MIMO-OFDM.

1.1 OFDM History.

1.2 OFDM Schematic.

1.3 Channel Estimation for Multicarrier.

1.5 Signal Detection in MIMO-OFDM Systems.

1.6 Iterative Signal Processing for SDM-OFDM.

1.7 System Model.

1.8 SDM-OFDM System Model.

1.9 Novel Aspects and Outline of the Book.

1.10 Chapter Summary.

2 OFDM Standards.

2.1 Wi-Fi.

2.2 3GPP Long-Term Evolution.

2.3 WiMAX Evolution.

2.4 Chapter Summary.

I Coherently Detected SDMA-OFDM Systems.

3 Channel Coding Assisted STBC-OFDM Systems.

3.1 Introduction.

3.2 Space-Time Block Codes.

3.3 Channel Coded Space-Time Block Codes.

3.4 Channel Coding Aided Space-Time Block Coded OFDM.

3.5 Chapter Summary.

4 Coded Modulation Assisted Multi-User SDMA-OFDM Using Frequency-Domain Spreading.

4.1 Introduction.

4.2 System Model.

4.3 Simulation Results.

4.4 Chapter Summary.

5 Hybrid Multi-User Detection for SDMA-OFDM Systems.

5.1 Introduction.

5.2 Genetical Algorithm Assisted Multi-User Detection.

5.3 Enhanced GA-based Multi-User Detection.

5.4 Chapter Summary.

6 DS-Spreading and Slow Subcarrier-Hopping Aided Multi-User SDMA-OFDM Systems.

6.1 Conventional SDMA-OFDM Systems.

6.2 Introduction to Hybrid SDMA-OFDM.

6.3 Subband-Hopping Versus Subcarrier-Hopping.

6.4 System Architecture.

6.5 Simulation Results.

6.6 Complexity Issues.

6.7 Conclusions.

6.8 Chapter Summary.

7 Channel Estimation for OFDM and MC-CDMA.

7.1 Pilot-Assisted Channel Estimation.

7.2 Decision Directed Channel Estimation.

7.3 A Posteriori FD-CTF Estimation.

7.4 A Posteriori CIR Estimation.

7.5 Parametric FS-CIR Estimation.

7.6 Time-Domain A Priori CIR Tap Prediction.

7.7 PASTD Aided DDCE.

7.8 Channel Estimation for MIMO-OFDM.

8 Iterative Joint Channel Estimation and MUD for SDMA-OFDM Systems.

8.1 Introduction.

8.2 System Overview.

8.3 GA-assisted Iterative Joint Channel Estimation and MUD.

8.4 Simulation Results.

8.5 Conclusions.

8.6 Chapter Summary.

II Coherent versus Non-Coherent and Cooperative OFDM Systems List of Symbols in Part II.

9 Reduced-Complexity Sphere Detection for Uncoded SDMA-OFDM Systems.

9.1 Introduction.

9.2 Principle of Sphere Detection.

9.3 Complexity-Reduction Schemes for SD.

9.4 Comparison of the Depth-First, K-Best and OHRSA Detectors.

9.5 Chapter Conclusions.

10 Reduced-Complexity Iterative Sphere Detection for Channel Coded SDMA-OFDM Systems.

10.1 Introduction.

10.2 Channel Coded Iterative Center-Shifting SD.

10.3 Apriori-LLR-Threshold-Assisted Low-Complexity SD.

10.4 Unity-Rate-Code-Aided Three-Stage Iterative Receiver Employing SD.

10.5 Chapter Conclusions.

11 Sphere Packing Modulated STBC-OFDM and its Sphere Detection.

11.1 Introduction.

11.2 Orthogonal Transmit Diversity Design with Sphere Packing Modulation.

11.3 Sphere Detection Design for Sphere Packing Modulation.

11.4 Chapter Conclusions.

12 Multiple-Symbol Differential Sphere Detection for Cooperative OFDM.

12.1 Introduction.

12.2 Principle of Single-Path Multiple-Symbol Differential Sphere Detection.

12.3 Multi-Path MSDSD Design for Cooperative Communication.

12.4 Chapter Conclusions.

13 Resource Allocation for the DifferentiallyModulated Cooperative Uplink.

13.1 Introduction.

13.2 Performance Analysis of the Cooperation-Aided Uplink.

13.3 Cooperating-User-Selection for the Uplink.

13.4 Joint CPS and CUS for the Differential Cooperative Cellular Uplink Using APC.

13.5 Chapter Conclusions.

14 The Near-Capacity DifferentiallyModulated Cooperative Cellular Uplink.

14.1 Introduction.

14.2 Channel Capacity of Non-coherent Detectors.

14.3 Soft-Input Soft-OutputMSDSD.

14.4 Approaching the Capacity of the Differentially Modulated Cooperative Cellular Uplink .

14.5 Chapter Conclusions.

III Coherent SDM-OFDM Systems.

15 Multi-Stream Detection for SDM-OFDM Systems.

15.1 SDM/V-BLAST OFDM Architecture.

15.2 Linear Detection Methods.

15.3 Non-Linear SDM Detection Methods.

15.4 Performance Enhancement Using Space-Frequency Interleaving.

15.5 Performance Comparison and Discussion.

15.6 Conclusions.

16 Approximate Log-MAP SDM-OFDM Multi-Stream Detection.

16.1 Optimized Hierarchy Reduced Search Algorithm-Aided SDM Detection.

17 Iterative Channel Estimation and Multi-Stream Detection for SDM-OFDM.

17.1 Iterative Signal Processing.

17.2 Turbo Forward Error Correction Coding.

17.3 Iterative Detection – Decoding.

17.4 Iterative Channel Estimation – Detection – Decoding.

18 Summary, Conclusions and Future Research.

18.1 Summary of the Results.

18.2 Suggestions for Future Research.

A Appendix to Chapter 5.

A.1 A Brief Introduction to Genetic Algorithms.

A.2 Normalization of the Mutation-Induced Transition Probability.

Glossary.

Bibliography.

Subject Index.

Author Index.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >