Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques
Safety in industrial process and production plants is a concern of rising importance but because the control devices which are now exploited to improve the performance of industrial processes include both sophisticated digital system design techniques and complex hardware, there is a higher probability of failure. Control systems must include automatic supervision of closed-loop operation to detect and isolate malfunctions quickly. A promising method for solving this problem is "analytical redundancy", in which residual signals are obtained and an accurate model of the system mimics real process behaviour. If a fault occurs, the residual signal is used to diagnose and isolate the malfunction. This book focuses on model identification oriented to the analytical approach of fault diagnosis and identification covering: choice of model structure; parameter identification; residual generation; and fault diagnosis and isolation. Sample case studies are used to demonstrate the application of these techniques.
1101007890
Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques
Safety in industrial process and production plants is a concern of rising importance but because the control devices which are now exploited to improve the performance of industrial processes include both sophisticated digital system design techniques and complex hardware, there is a higher probability of failure. Control systems must include automatic supervision of closed-loop operation to detect and isolate malfunctions quickly. A promising method for solving this problem is "analytical redundancy", in which residual signals are obtained and an accurate model of the system mimics real process behaviour. If a fault occurs, the residual signal is used to diagnose and isolate the malfunction. This book focuses on model identification oriented to the analytical approach of fault diagnosis and identification covering: choice of model structure; parameter identification; residual generation; and fault diagnosis and isolation. Sample case studies are used to demonstrate the application of these techniques.
199.99 In Stock
Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques

Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques

Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques

Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques

Hardcover(2002)

$199.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Safety in industrial process and production plants is a concern of rising importance but because the control devices which are now exploited to improve the performance of industrial processes include both sophisticated digital system design techniques and complex hardware, there is a higher probability of failure. Control systems must include automatic supervision of closed-loop operation to detect and isolate malfunctions quickly. A promising method for solving this problem is "analytical redundancy", in which residual signals are obtained and an accurate model of the system mimics real process behaviour. If a fault occurs, the residual signal is used to diagnose and isolate the malfunction. This book focuses on model identification oriented to the analytical approach of fault diagnosis and identification covering: choice of model structure; parameter identification; residual generation; and fault diagnosis and isolation. Sample case studies are used to demonstrate the application of these techniques.

Product Details

ISBN-13: 9781852336851
Publisher: Springer London
Publication date: 01/17/2003
Series: Advances in Industrial Control
Edition description: 2002
Pages: 282
Product dimensions: 6.14(w) x 9.21(h) x 0.36(d)

Table of Contents

1. Introduction.- 2. Model-based Fault Diagnosis Techniques.- 3. System Identification for Fault Diagnosis.- 4. Residual Generation, Fault Diagnosis and Identification.- 5. Fault Diagnosis Application Studies.- 6. Concluding Remarks.- References.
From the B&N Reads Blog

Customer Reviews