Modern Control Systems / Edition 11

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $48.19
Usually ships in 1-2 business days
(Save 69%)
Other sellers (Hardcover)
  • All (7) from $48.19   
  • Used (7) from $47.99   
Close
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any BN.com coupons and promotions
$47.99
Seller since 2014

Feedback rating:

(55)

Condition:

New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

Very Good
0132270285 Very Good! May NOT contain supplemental materials such as CD's, info-trac, access codes, etc... May contain bookstore stickers. Satisfaction Guaranteed! Choose ... Expedited Shipping for fastest delivery! Free USPS Tracking Number. Read more Show Less

Ships from: Lexington, KY

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$78.71
Seller since 2009

Feedback rating:

(286)

Condition: Very Good
Book may have signs of cover wear. Inside pages may have highlighting, writing, and/or underlining. Ships same day or next business day. Free USPS Tracking Number. Excellent ... Customer Service. Ships from TN Read more Show Less

Ships from: Nashville, TN

Usually ships in 1-2 business days

  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$119.50
Seller since 2014

Feedback rating:

(280)

Condition: Good
Possible retired library copy, some have markings or writing. May or may not include accessories such as CD or access codes.

Ships from: Chatham, NJ

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$133.99
Seller since 2014

Feedback rating:

(42)

Condition: Good
Buy with Confidence. Excellent Customer Support. We ship from multiple US locations. No CD, DVD or Access Code Included.

Ships from: Fort Mill, SC

Usually ships in 1-2 business days

  • Standard, 48 States
$136.20
Seller since 2014

Feedback rating:

(280)

Condition: Very Good
Very good.

Ships from: Chatham, NJ

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$139.95
Seller since 2014

Feedback rating:

(12)

Condition: Acceptable
Upper Saddle River, NJ 2007 Hard cover 11th ed. Fair. Glued binding. Paper over boards. 1018 p. Contains: Illustrations.

Ships from: Pueblo West, CO

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
$150.69
Seller since 2014

Feedback rating:

(280)

Condition: Like New
As new.

Ships from: Chatham, NJ

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
Page 1 of 1
Showing All
Close
Sort by

Overview

For more than twenty years, Modern Control Systems has set the standard of excellence for undergraduate control systems textbooks. It has remained a bestseller because Richard Dorf and Robert Bishop have been able to take complex control theory and make it exciting and accessible to students. The book presents a control engineering methodology that, while based on mathematical fundamentals, stresses physical system modeling and practical control system designs with realistic system specifications.

This bestselling text, renowned for its practical applications and design problems, has been revised to make greater use of MATLAB integration, and features a new chapter on digital controls. The book includes more practical applications and contexts than any other book in the field.

Read More Show Less

Editorial Reviews

Booknews
Organized around the concepts of control system theory as they have been developed in the frequency and time domains, this senior level engineering textbook stresses physical system modeling and practical control system designs with realistic system specifications. The ninth edition integrates a companion web site and the use of Simulink. Annotation c. Book News, Inc., Portland, OR (booknews.com)
Read More Show Less

Product Details

  • ISBN-13: 9780132270281
  • Publisher: Prentice Hall
  • Publication date: 8/14/2007
  • Edition description: Older Edition
  • Edition number: 11
  • Pages: 1056
  • Product dimensions: 9.06 (w) x 11.08 (h) x 1.75 (d)

Meet the Author

Richard C. Dorf is a Professor of Electrical and Computer Engineering at the University of California, Davis. Known as an instructor who is highly concerned with the discipline of electrical engineering and its application to social and economic needs, Professor Dorf has written and edited several successful engineering textbooks and handbooks, including the best selling Engineering Handbook, second edition and the third edition of the Electrical Engineering Handbook. Professor Dorf is also co author of Technology Ventures, a leading textbook on technology entrepreneurship. Professor Dorf is a Fellow of the IEEE and a Fellow of the ASEE. He is active in the fields of control system design and robotics. Dr. Dorf holds a patent for the PIDA controller.

Robert H. Bishop is the OPUS Dean of Engineering at Marquette University and is a Professor in the Department of Electrical and Computer Engineering. Prior to coming to Marquette University, he was a Professor of Aerospace Engineering and Engineering Mechanics at The University of Texas at Austin for 20 years where he held the Joe J. King Professorship and was a Distinguished Teaching Professor. Professor Bishop started his engineering career as a member of the technical staff at the MIT Charles Stark Draper Laboratory. He authors the well-known textbook for teaching graphical programming entitled Learning with LabVIEW and is also the editor-in-chief of the Mechatronics Handbook. A talented educator, Professor Bishop has been recognized with numerous teaching awards including the coveted Lockheed Martin Tactical Aircraft Systems Award for Excellence in Engineering Teaching. He also received the John Leland Atwood Award by the American Society of Engineering Educators (ASEE) and the American Institute of Aeronautics and Astronautics (AIAA) that is given periodically to “a leader who has made lasting and significant contributions to aerospace engineering education.” He is a Fellow of the AIAA, a Fellow of the American Astronautical Society (AAS), and active in ASEE and in the Institute of Electrical and Electronics Engineers (IEEE).

Read More Show Less

Read an Excerpt

PREFACE:

Preface

MODERN CONTROL SYSTEMS—THE BOOK

The Mars Pathfinder spacecraft was sent aloft aboard a Delta II expendable launch vehicle on December 4,1996 to begin a seven-month journey to the Red Planet. The Pathfinder mission, one of the first of the NASA Discovery-class missions, was the first mission to land on Mars since the successful Viking spacecraft over two decades ago. After traveling over 497,418,000 km, the spacecraft impacted the Martian surface on July 4,1997 with a velocity of about 18 m/s. Upon impact the spacecraft bounced up approximately 15 meters, then continued to bounce another 15 times and rolled to a stop about 1 km from the initial impact point. The landing site is known as the Sagan Memorial Station and is located in the Ares Vallis region at 19.33 N, 33.55 W. Pathfinder deployed the first-ever autonomous rover vehicle, known as the Sojourner, to explore the landing site area. The mobile Sojourner had a mass of 10.5 kilograms and was designed to roam in a 300-m2 area for around 30 days. The 0.25-m2 solar array provided 16 watt-hours of peak power and the primary battery provided about 150 watt-hours of power. The steering control of this vehicle had to be accurate and had to limit the power consumption. Control engineers play a critical role in the success of the planetary exploration program. The role of autonomous vehicle spacecraft control systems will continue to increase as flight computer hardware and operating systems improve. In fact, Pathfinder used a commercially produced, multitasking computer operating system hosted in a 32-bit radiation-hardened workstation with1-gigabyte storage, programmable in C. This is quite an advancement over the Apollo computers with a fixed (read-only) memory of 36,864 words (one word was 16 bits) together with an erasable memory of 2,048 words. The Apollo "programming language" was a pseudocode notation encoded and stored as a list of data words "interpreted" and translated into a sequence of subroutine links. Interesting real-world problems, such as planetary mobile rovers like Sojourner, are used as illustrative examples throughout the book. For example, a mobile rover design problem is discussed in the Design Example in Section 4.8.

Control engineering is an exciting and a challenging field. By its very nature, control engineering is a multidisciplinary subject, and it has taken its place as a core course in the engineering curriculum. It is reasonable to expect different approaches to mastering and practicing the art of control engineering. Since the subject has a strong mathematical foundation, one might approach it from a strictly theoretical point of view, emphasizing theorems and proofs. On the other hand, since the ultimate objective is to implement controllers in real systems, one might take an ad hoc approach relying only on intuition and hands-on experience when designing feedback control systems. Our approach is to present a control engineering methodology that, while based on mathematical fundamentals, stresses physical system modeling and practical control system designs with realistic system specifications.

We believe that the most important and productive approach to learning is for each of us to rediscover and recreate anew the answers and methods of the past. Thus the ideal is to present the student with a series of problems and questions and point to some of the answers that have been obtained over the past decades. The traditional method—to confront the student not with the problem but with the finished solution—is to deprive the student of all excitement, to shut off the creative impulse, to reduce the adventure of humankind to a dusty heap of theorems. The issue, then, is to present some of the unanswered and important problems that we continue to confront, for it may be asserted that what we have truly learned and understood, we discovered ourselves.

The purpose of this book is to present the structure of feedback control theory and to provide a sequence of exciting discoveries as we proceed through the text and problems. If this book is able to assist the student in discovering feedback control system theory and practice, it will have succeeded.

THE AUDIENCE

This text is designed for an introductory undergraduate course in control systems for engineering students. There is very little demarcation between aerospace, chemical, electrical, industrial, and mechanical engineering in control system practice; therefore this text is written without any conscious bias toward one discipline. Thus it is hoped that this book will be equally useful for all engineering disciplines and, perhaps, will assist in illustrating the utility of control engineering. The numerous problems and examples represent all fields, and the examples of the sociological, biological, ecological, and economic control systems are intended to provide the reader with an awareness of the general applicability of control theory to many facets of life. We believe that exposing students of one discipline to examples and problems from other disciplines will provide them with the ability to see beyond their own field of study. Many students pursue careers in engineering fields other than their own. For example, many electrical and mechanical engineers find themselves in the aerospace industry working alongside aerospace engineers. We hope this introduction to control engineering will give students a broader understanding of control system design and analysis.

In its first eight editions, Modern Control Systems has been used in senior-level courses for engineering students at more than 400 colleges and universities. It also has been used in courses for engineering graduate students with no previous background in control engineering.

THE NINTH EDITION

A companion website has been developed for students and faculty using the ninth edition. The website contains practice exercises and exam problems, all the MATLAB m-files and Simulink simulations in the book, Laplace and z-transform tables, written materials on matrix algebra, complex numbers, and symbols, units, and conversion factors. An icon will appear in the book margin whenever there is additional related material on the website. Also, since the website provides a mechanism for continuously updating and adding control related materials of interest to students and professors, it is advisable to visit the website regularly during the semester or quarter when taking the course. The MCS website address is ...

Read More Show Less

Table of Contents

Preface

About the Authors

Chapter 1 Introduction to Control Systems 1

1.1 Introduction 2

1.2 Brief History of Automatic Control 5

1.3 Examples of Control Systems 10

1.4 Engineering Design 17

1.5 Control System Design 18

1.6 Mechatronic Systems 21

1.7 Green Engineering 25

1.8 The Future Evolution of Control Systems 27

1.9 Design Examples 28

1.10 Sequential Design Example: Disk Drive Read System 32

1.11 Summary 34

Skills Check 35

Exercises 37

Problems 39

Advanced Problems 44

Design Problems 46

Terms and Concepts 48

Chapter 2 Mathematical Models of Systems 49

2.1 Introduction 50

2.2 Differential Equations of Physical Systems 50

2.3 Linear Approximations of Physical Systems 55

2.4 The Laplace Transform 58

2.5 The Transfer Function of Linear Systems 65

2.6 Block Diagram Models 79

2.7 Signal-Flow Graph Models 84

2.8 Design Examples 90

2.9 The Simulation of Systems Using Control Design Software 113

2.10 Sequential Design Example: Disk Drive Read System 128

2.11 Summary 130

Skill Check 131

Exercises 135

Problems 141

Advanced Problems 153

Design Problems 155

Computer Problems 157

Terms and Concepts 159

Chapter 3 State Variable Models 161

3.1 Introduction 162

3.2 The State Variables of a Dynamic System 162

3.3 The State Differential Equation 166

3.4 Signal-Flow Graph and Block Diagram Models 171

3.5 Alternative Signal-Flow Graph and Block Diagram Models 182

3.6 The Transfer Function from the State Equation 187

3.7 The Time Response and the State Transition Matrix 189

3.8 Design Examples 193

3.9 Analysis of State Variable Models Using Control Design Software 206

3.10 Sequential Design Example: Disk Drive Read System 209

3.11 Summary 213

SkillS Check 214

Exercises 217

Problems 220

Advanced Problems 227

Design Problems 230

Computer Problems 231

Terms and Concepts 232

Chapter 4 Feedback Control System Characteristics 234

4.1 Introduction 235

4.2 Error Signal Analysis 237

4.3 Sensitivity of Control Systems to Parameter Variations 239

4.4 Disturbance Signals in a Feedback Control System 242

4.5 Control of the Transient Response 247

4.6 Steady-State Error 250

4.7 The Cost of Feedback 253

4.8 Design Examples 254

4.9 Control System Characteristics Using Control Design Software 268

4.10 Sequential Design Example: Disk Drive Read System 273

4.11 Summary 277

Skills Check 279

Exercises 283

Problems 287

Advanced Problems 293

Design Problems 296

Computer Problems 300

Terms and Concepts 303

Chapter 5 The Performance of Feedback Control Systems 304

5.1 Introduction 305

5.2 Test Input Signals 305

5.3 Performance of Second-Order Systems 308

5.4 Effects of a Third Pole and a Zero on the Second-Order System Response 314

5.5 The s-Plane Root Location and the Transient Response 320

5.6 The Steady-State Error of Feedback Control Systems 322

5.7 Performance Indices 330

5.8 The Simplification of Linear Systems 339

5.9 Design Examples 342

5.10 System Performance Using Control Design Software 356

5.11 Sequential Design Example: Disk Drive Read System 360

5.12 Summary 364

Skills Check 364

Exercises 368

Problems 371

Advanced Problems 377

Design Problems 379

Computer Problems 382

Terms and Concepts 384

Chapter 6 The Stability of Linear Feedback Systems 386

6.1 The Concept of Stability 387

6.2 The Routh-Hurwitz Stability Criterion 391

6.3 The Relative Stability of Feedback Control Systems 399

6.4 The Stability of State Variable Systems 401

6.5 Design Examples 404

6.6 System Stability Using Control Design Software 413

6.7 Sequential Design Example: Disk Drive Read System 421

6.8 Summary 424

Skills Check 425

Exercises 428

Problems 430

Advanced Problems 435

Design Problems 438

Computer Problems 440

Terms and Concepts 442

Chapter 7 The Root Locus Method 443

7.1 Introduction 444

7.2 The Root Locus Concept 444

7.3 The Root Locus Procedure 449

7.4 Parameter Design by the Root Locus Method 467

7.5 Sensitivity and the Root Locus 473

7.6 PID Controllers 480

7.7 Negative Gain Root Locus 492

7.8 Design Examples 496

7.9 The Root Locus Using Control Design Software 510

7.10 Sequential Design Example: Disk Drive Read System 516

7.11 Summary 518

Skills Check 522

Exercises 526

Problems 530

Advanced Problems 539

Design Problems 543

Computer Problems 549

Terms and Concepts 551

Chapter 8 Frequency Response Methods 553

8.1 Introduction 554

8.2 Frequency Response Plots 556

8.3 Frequency Response Measurements 577

8.4 Performance Specifications in the Frequency Domain 579

8.5 Log Magnitude and Phase Diagrams 582

8.6 Design Examples 583

8.7 Frequency Response Methods Using Control Design Software 596

8.8 Sequential Design Example: Disk Drive Read System 602

8.9 Summary 603

Skills Check 608

Exercises 613

Problems 616

Advanced Problems 626

Design Problems 628

Computer Problems 631

Terms and Concepts 633

Chapter 9 Stability in the Frequency Domain 634

9.1 Introduction 635

9.2 Mapping Contours in the s-Plane 636

9.3 The Nyquist Criterion 642

9.4 Relative Stability and the Nyquist Criterion 653

9.5 Time-Domain Performance Criteria in the Frequency Domain 661

9.6 System Bandwidth 668

9.7 The Stability of Control Systems with Time Delays 668

9.8 Design Examples 673

9.9 PID Controllers in the Frequency Domain 691

9.10 Stability in the Frequency Domain Using Control Design Software 692

9.11 Sequential Design Example: Disk Drive Read System 700

9.12 Summary 703

Skills Check 711

Exercises 715

Problems 721

Advanced Problems 731

Design Problems 735

Computer Problems 740

Terms and Concepts 742

Chapter 10 The Design of Feedback Control Systems 743

10.1 Introduction 744

10.2 Approaches to System Design 745

10.3 Cascade Compensation Networks 747

10.4 Phase-Lead Design Using the Bode Diagram 751

10.5 Phase-Lead Design Using the Root Locus 757

10.6 System Design Using Integration Networks 764

10.7 Phase-Lag Design Using the Root Locus 767

10.8 Phase-Lag Design Using the Bode Diagram 772

10.9 Design on the Bode Diagram Using Analytical Methods 776

10.10 Systems with a Prefilter 778

10.11 Design for Deadbeat Response 781

10.12 Design Examples 783

10.13 System Design Using Control Design Software 796

10.14 Sequential Design Example: Disk Drive Read System 802

10.15 Summary 804

Skills Check 806

Exercises 810

Problems 814

Advanced Problems 823

Design Problems 826

Computer Problems 831

Terms and Concepts 833

Chapter 11 The Design of State Variable Feedback Systems 834

11.1 Introduction 835

11.2 Controllability and Observability 835

11.3 Full-State Feedback Control Design 841

11.4 Observer Design 847

11.5 Integrated Full-State Feedback and Observer 851

11.6 Reference Inputs 857

11.7 Optimal Control Systems 859

11.8 Internal Model Design 869

11.9 Design Examples 873

11.10 State Variable Design Using Control Design Software 882

11.11 Sequential Design Example: Disk Drive Read System 888

11.12 Summary 890

Skills Check 890

Exercises 894

Problems 896

Advanced Problems 900

Design Problems 903

Computer Problems 906

Terms and Concepts 908

Chapter 12 Robust Control Systems 910

12.1 Introduction 911

12.2 Robust Control Systems and System Sensitivity 912

12.3 Analysis of Robustness 916

12.4 Systems with Uncertain Parameters 918

12.5 The Design of Robust Control Systems 920

12.6 The Design of Robust PID-Controlled Systems 926

12.7 The Robust Internal Model Control System 932

12.8 Design Examples 935

12.9 The Pseudo-Quantitative Feedback System 952

12.10 Robust Control Systems Using Control Design Software 953

12.11 Sequential Design Example: Disk Drive Read System 958

12.12 Summary 960

Skills Check 961

Exercises 965

Problems 967

Advanced Problems 971

Design Problems 974

Computer Problems 980

Terms and Concepts 982

Chapter 13 Digital Control Systems 984

13.1 Introduction 985

13.2 Digital Computer Control System Applications 985

13.3 Sampled-Data Systems 987

13.4 The z-Transform 990

13.5 Closed-Loop Feedback Sampled-Data Systems 995

13.6 Performance of a Sampled-Data, Second-Order System 999

13.7 Closed-Loop Systems with Digital Computer Compensation 1001

13.8 The Root Locus of Digital Control Systems 1004

13.9 Implementation of Digital Controllers 1008

13.10 Design Examples 1009

13.11 Digital Control Systems Using Control Design Software 1018

13.12 Sequential Design Example: Disk Drive Read System 1023

13.13 Summary 1025

Skill Check 1025

Exercises 1029

Problems 1031

Advanced Problems 1033

Design Problems 1034

Computer Problems 1036

Terms and Concepts 1037

Appendix A Matlab Basics 1038

References 1056

Index 1071

Appendix B MathScript RT Module Basics

Appendix C Symbols, Units, and Conversion Factors

Appendix D Laplace Transform Pairs

Appendix E An Introduction to Matrix Algebra

Appendix F Decibel Conversion

Appendix G Complex Numbers

Appendix H z-Transform Paris Preface

Appendix I Discrete-Time Evaluation of the Time Response

Read More Show Less

Preface

PREFACE:

Preface

MODERN CONTROL SYSTEMS—THE BOOK

The Mars Pathfinder spacecraft was sent aloft aboard a Delta II expendable launch vehicle on December 4,1996 to begin a seven-month journey to the Red Planet. The Pathfinder mission, one of the first of the NASA Discovery-class missions, was the first mission to land on Mars since the successful Viking spacecraft over two decades ago. After traveling over 497,418,000 km, the spacecraft impacted the Martian surface on July 4,1997 with a velocity of about 18 m/s. Upon impact the spacecraft bounced up approximately 15 meters, then continued to bounce another 15 times and rolled to a stop about 1 km from the initial impact point. The landing site is known as the Sagan Memorial Station and is located in the Ares Vallis region at 19.33 N, 33.55 W. Pathfinder deployed the first-ever autonomous rover vehicle, known as the Sojourner, to explore the landing site area. The mobile Sojourner had a mass of 10.5 kilograms and was designed to roam in a 300-m2 area for around 30 days. The 0.25-m2 solar array provided 16 watt-hours of peak power and the primary battery provided about 150 watt-hours of power. The steering control of this vehicle had to be accurate and had to limit the power consumption. Control engineers play a critical role in the success of the planetary exploration program. The role of autonomous vehicle spacecraft control systems will continue to increase as flight computer hardware and operating systems improve. In fact, Pathfinder used a commercially produced, multitasking computer operating system hosted in a 32-bit radiation-hardened workstationwith1-gigabyte storage, programmable in C. This is quite an advancement over the Apollo computers with a fixed (read-only) memory of 36,864 words (one word was 16 bits) together with an erasable memory of 2,048 words. The Apollo "programming language" was a pseudocode notation encoded and stored as a list of data words "interpreted" and translated into a sequence of subroutine links. Interesting real-world problems, such as planetary mobile rovers like Sojourner, are used as illustrative examples throughout the book. For example, a mobile rover design problem is discussed in the Design Example in Section 4.8.

Control engineering is an exciting and a challenging field. By its very nature, control engineering is a multidisciplinary subject, and it has taken its place as a core course in the engineering curriculum. It is reasonable to expect different approaches to mastering and practicing the art of control engineering. Since the subject has a strong mathematical foundation, one might approach it from a strictly theoretical point of view, emphasizing theorems and proofs. On the other hand, since the ultimate objective is to implement controllers in real systems, one might take an ad hoc approach relying only on intuition and hands-on experience when designing feedback control systems. Our approach is to present a control engineering methodology that, while based on mathematical fundamentals, stresses physical system modeling and practical control system designs with realistic system specifications.

We believe that the most important and productive approach to learning is for each of us to rediscover and recreate anew the answers and methods of the past. Thus the ideal is to present the student with a series of problems and questions and point to some of the answers that have been obtained over the past decades. The traditional method—to confront the student not with the problem but with the finished solution—is to deprive the student of all excitement, to shut off the creative impulse, to reduce the adventure of humankind to a dusty heap of theorems. The issue, then, is to present some of the unanswered and important problems that we continue to confront, for it may be asserted that what we have truly learned and understood, we discovered ourselves.

The purpose of this book is to present the structure of feedback control theory and to provide a sequence of exciting discoveries as we proceed through the text and problems. If this book is able to assist the student in discovering feedback control system theory and practice, it will have succeeded.

THE AUDIENCE

This text is designed for an introductory undergraduate course in control systems for engineering students. There is very little demarcation between aerospace, chemical, electrical, industrial, and mechanical engineering in control system practice; therefore this text is written without any conscious bias toward one discipline. Thus it is hoped that this book will be equally useful for all engineering disciplines and, perhaps, will assist in illustrating the utility of control engineering. The numerous problems and examples represent all fields, and the examples of the sociological, biological, ecological, and economic control systems are intended to provide the reader with an awareness of the general applicability of control theory to many facets of life. We believe that exposing students of one discipline to examples and problems from other disciplines will provide them with the ability to see beyond their own field of study. Many students pursue careers in engineering fields other than their own. For example, many electrical and mechanical engineers find themselves in the aerospace industry working alongside aerospace engineers. We hope this introduction to control engineering will give students a broader understanding of control system design and analysis.

In its first eight editions, Modern Control Systems has been used in senior-level courses for engineering students at more than 400 colleges and universities. It also has been used in courses for engineering graduate students with no previous background in control engineering.

THE NINTH EDITION

A companion website has been developed for students and faculty using the ninth edition. The website contains practice exercises and exam problems, all the MATLAB m-files and Simulink simulations in the book, Laplace and z-transform tables, written materials on matrix algebra, complex numbers, and symbols, units, and conversion factors. An icon will appear in the book margin whenever there is additional related material on the website. Also, since the website provides a mechanism for continuously updating and adding control related materials of interest to students and professors, it is advisable to visit the website regularly during the semester or quarter when taking the course. The MCS website address is ...

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)