Modern Geometry-- Methods and Applications: Part II: The Geometry and Topology of Manifolds / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $20.00
Usually ships in 1-2 business days
(Save 78%)
Other sellers (Hardcover)
  • All (11) from $20.00   
  • New (4) from $68.97   
  • Used (7) from $20.00   

More About This Textbook

Product Details

  • ISBN-13: 9780387961620
  • Publisher: Springer New York
  • Publication date: 8/5/1985
  • Series: Graduate Texts in Mathematics Series, #104
  • Edition description: 1985
  • Edition number: 1
  • Pages: 432
  • Product dimensions: 1.06 (w) x 6.14 (h) x 9.21 (d)

Table of Contents

1 Examples of Manifolds.- §1. The concept of a manifold.- 1.1. Definition of a manifold.- 1.2. Mappings of manifolds; tensors on manifolds.- 1.3. Embeddings and immersions of manifolds. Manifolds with boundary.- §2. The simplest examples of manifolds.- 2.1. Surfaces in Euclidean space. Transformation groups as manifolds.- 2.2. Projective spaces.- 2.3. Exercises.- §3. Essential facts from the theory of Lie groups.- 3.1. The structure of a neighbourhood of the identity of a Lie group. The Lie algebra of a Lie group. Semisimplicity.- 3.2. The concept of a linear representation. An example of a non-matrix Lie group.- §4. Complex manifolds.- 4.1. Definitions and examples.- 4.2. Riemann surfaces as manifolds.- §5. The simplest homogeneous spaces.- 5.1. Action of a group on a manifold.- 5.2. Examples of homogeneous spaces.- 5.3. Exercises.- §6. Spaces of constant curvature (symmetric spaces).- 6.1. The concept of a symmetric space.- 6.2. The isometry group of a manifold. Properties of its Lie algebra.- 6.3. Symmetric spaces of the first and second types.- 6.4. Lie groups as symmetric spaces.- 6.5. Constructing symmetric spaces. Examples.- 6.6. Exercises.- §7. Vector bundles on a manifold.- 7.1. Constructions involving tangent vectors.- 7.2. The normal vector bundle on a submanifold.- 2 Foundational Questions. Essential Facts Concerning Functions on a Manifold. Typical Smooth Mappings.- §8. Partitions of unity and their applications.- 8.1. Partitions of unity.- 8.2. The simplest applications of partitions of unity. Integrals over a manifold and the general Stokes formula.- 8.3. Invariant metrics.- §9. The realization of compact manifolds as surfaces in—N.- §10. Various properties of smooth maps of manifolds.- 10.1. Approximation of continuous mappings by smooth ones.- 10.2. Sard’s theorem.- 10.3. Transversal regularity.- 10.4. Morse functions 86 §.- 11. Applications of Sard’s theorem.- 11.1. The existence of embeddings and immersions.- 11.2. The construction of Morse functions as height functions.- 11.3. Focal points.- 3 The Degree of a Mapping. The Intersection Index of Submanifolds. Applications.- §12. The concept of homotopy.- 12.1. Definition of homotopy. Approximation of continuous maps and homotopies by smooth ones.- 12.2. Relative homotopies.- §13. The degree of a map.- 13.1. Definition of degree.- 13.2. Generalizations of the concept of degree.- 13.3. Classification of homotopy classes of maps from an arbitrary manifold to a sphere.- 13.4. The simplest examples.- §14. Applications of the degree of a mapping.- 14.1. The relationship between degree and integral.- 14.2. The degree of a vector field on a hypersurface.- 14.3. The Whitney number. The Gauss-Bonnet formula.- 14.4. The index of a singular point of a vector field.- 14.5. Transverse surfaces of a vector field. The Poincaré-Bendixson theorem.- §15. The intersection index and applications.- 15.1. Definition of the intersection index.- 15.2. The total index of a vector field.- 15.3. The signed number of fixed points of a self-map (the Lefschetz number). The Brouwer fixed-point theorem.- 15.4. The linking coefficient.- 4 Orientability of Manifolds. The Fundamental Group. Covering Spaces (Fibre Bundles with Discrete Fibre).- §16. Orientability and homotopies of closed paths.- 16.1. Transporting an orientation along a path.- 16.2. Examples of non-orientable manifolds.- §17. The fundamental group.- 17.1. Definition of the fundamental group.- 17.2. The dependence on the base point.- 17.3. Free homotopy classes of maps of the circle.- 17.4. Homotopic equivalence.- 17.5. Examples.- 17.6. The fundamental group and orientability.- §18. Covering maps and covering homotopies.- 18.1. The definition and basic properties of covering spaces.- 18.2. The simplest examples. The universal covering.- 18.3. Branched coverings. Riemann surfaces.- 18.4. Covering maps and discrete groups of transformations.- §19. Covering maps and the fundamental group. Computation of the fundamental group of certain manifolds.- 19.1. Monodromy.- 19.2. Covering maps as an aid in the calculation of fundamental groups.- 19.3. The simplest of the homology groups.- 19.4. Exercises.- §20. The discrete groups of motions of the Lobachevskian plane.- 5 Homotopy Groups.- §21. Definition of the absolute and relative homotopy groups. Examples.- 21.1. Basic definitions.- 21.2. Relative homotopy groups. The exact sequence of a pair.- §22. Covering homotopies. The homotopy groups of covering spaces and loop spaces.- 22.1. The concept of a fibre space.- 22.2. The homotopy exact sequence of a fibre space.- 22.3. The dependence of the homotopy groups on the base point.- 22.4. The case of Lie groups.- 22.5. Whitehead multiplication.- §23. Facts concerning the homotopy groups of spheres. Framed normal bundles. The Hopf invariant.- 23.1. Framed normal bundles and the homotopy groups of spheres.- 23.2. The suspension map.- 23.3. Calculation of the groups—n+1(Sn).- 23.4. The groups—n+2(Sn).- 6 Smooth Fibre Bundles.- §24. The homotopy theory of fibre bundles.- 24.1. The concept of a smooth fibre bundle.- 24.2. Connexions.- 24.3. Computation of homotopy groups by means of fibre bundles.- 24.4. The classification of fibre bundles.- 24.5. Vector bundles and operations on them.- 24.6. Meromorphic functions.- 24.7. The Picard-Lefschetz formula.- §25. The differential geometry of fibre bundles.- 25.1. G-connexions on principal fibre bundles.- 25.2. G-connexions on associated fibre bundles. Examples.- 25.3. Curvature.- 25.4. Characteristic classes: Constructions.- 25.5. Characteristic classes: Enumeration.- §26. Knots and links. Braids.- 26.1. The group of a knot.- 26.2. The Alexander polynomial of a knot.- 26.3. The fibre bundle associated with a knot.- 26.4. Links.- 26.5. Braids.- 7 Some Examples of Dynamical Systems and Foliations on Manifolds.- §27. The simplest concepts of the qualitative theory of dynamical systems. Two-dimensional manifolds.- 27.1. Basic definitions.- 27.2. Dynamical systems on the torus.- §28. Hamiltonian systems on manifolds. Liouville’s theorem. Examples.- 28.1. Hamiltonian systems on cotangent bundles.- 28.2. Hamiltonian systems on symplectic manifolds. Examples.- 28.3. Geodesic flows.- 28.4. Liouville’s theorem.- 28.5. Examples.- §29. Foliations.- 29.1. Basic definitions.- 29.2. Examples of foliations of codimension 1.- §30. Variational problems involving higher derivatives.- 30.1. Hamiltonian formalism.- 30.2. Examples.- 30.3. Integration of the commutativity equations. The connexion with the Kovalevskaja problem. Finite-zoned periodic potentials.- 30.4. The Korteweg-deVries equation. Its interpretation as an infinite-dimensional Hamiltonian system.- 30.5 Hamiltonian formalism of field systems.- 8 The Global Structure of Solutions of Higher-Dimensional Variational Problems.- §31. Some manifolds arising in the general theory of relativity (GTR).- 31.1. Statement of the problem.- 31.2. Spherically symmetric solutions.- 31.3. Axially symmetric solutions.- 31.4. Cosmological models.- 31.5. Friedman’s models.- 31.6. Anisotropic vacuum models.- 31.7. More general models.- §32. Some examples of global solutions of the Yang-Mills equations. Chiral fields.- 32.1. General remarks. Solutions of monopole type.- 32.2. The duality equation.- 32.3. Chiral fields. The Dirichlet integral.- §33. The minimality of complex submanifolds.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)