Modular Forms and Fermat's Last Theorem
This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
1100324853
Modular Forms and Fermat's Last Theorem
This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
109.99 In Stock
Modular Forms and Fermat's Last Theorem

Modular Forms and Fermat's Last Theorem

Modular Forms and Fermat's Last Theorem

Modular Forms and Fermat's Last Theorem

Paperback(1st ed. 1997. 3rd printing 2000)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.

Product Details

ISBN-13: 9780387989983
Publisher: Springer New York
Publication date: 01/14/2000
Edition description: 1st ed. 1997. 3rd printing 2000
Pages: 582
Product dimensions: 6.10(w) x 9.25(h) x (d)

Table of Contents

I An Overview of the Proof of Fermat’s Last Theorem.- II A Survey of the Arithmetic Theory of Elliptic Curves.- III Modular Curves, Hecke Correspondences, and L-Functions.- IV Galois Coharnology.- V Finite Flat Group Schemes.- VI Three Lectures on the Modularity of % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacuaHbpGCgaqea8aadaWgaaWcbaWdbiaadweacaGGSaGaaG4maaWd % aeqaaaaa!3A7D! $${{\bar{\rho }}_{{E,3}}}$$ and the Langlands Reciprocity Conjecture.- VII Serre’s Conjectures.- VIII An Introduction to the Deformation Theory of Galois Representations.- IX Explicit Construction of Universal Deformation Rings.- X Hecke Algebras and the Gorenstein Property.- XI Criteria for Complete Intersections.- XII—-adic Modular Deformations and Wiles’s “Main Conjecture”.- XIII The Flat Deformation Functor.- XIV Hecke Rings and Universal Deformation Rings.- XV Explicit Families of Elliptic Curves with Prescribed Mod NRepresentations.- XVI Modularity of Mod 5 Representations.- XVII An Extension of Wiles’ Results.- Appendix to Chapter XVII Classification of % MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacuaHbpGCgaqea8aadaWgaaWcbaWdbiaadweacaGGSaGaeS4eHWga % paqabaaaaa!3AF1! $${{\bar{\rho }}_{{E,\ell }}}$$ by the jInvariant of E.- XVIII Class Field Theory and the First Case of Fermat’s Last Theorem.- XIX Remarks on the History of Fermat’s Last Theorem 1844 to 1984.- XX On Ternary Equations of Fermat Type and Relations with Elliptic Curves.- XXI Wiles’ Theorem and the Arithmetic of Elliptic Curves.
From the B&N Reads Blog

Customer Reviews