Multiphysics Simulation: Electromechanical System Applications and Optimization
This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today’s engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, magnetic components, RF components, actuators, and motors; reviews the governing equations for the simulation of related multiphysics problems; outlines relevant (topology and parametric size) optimization methods for electromechanical systems; describes in detail several multiphysics simulation and optimization example studies in both two and three dimensions, with sample numerical code.
1133129947
Multiphysics Simulation: Electromechanical System Applications and Optimization
This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today’s engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, magnetic components, RF components, actuators, and motors; reviews the governing equations for the simulation of related multiphysics problems; outlines relevant (topology and parametric size) optimization methods for electromechanical systems; describes in detail several multiphysics simulation and optimization example studies in both two and three dimensions, with sample numerical code.
179.99 In Stock
Multiphysics Simulation: Electromechanical System Applications and Optimization

Multiphysics Simulation: Electromechanical System Applications and Optimization

Multiphysics Simulation: Electromechanical System Applications and Optimization

Multiphysics Simulation: Electromechanical System Applications and Optimization

Hardcover(2014)

$179.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
    Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today’s engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, magnetic components, RF components, actuators, and motors; reviews the governing equations for the simulation of related multiphysics problems; outlines relevant (topology and parametric size) optimization methods for electromechanical systems; describes in detail several multiphysics simulation and optimization example studies in both two and three dimensions, with sample numerical code.

Product Details

ISBN-13: 9781447156390
Publisher: Springer London
Publication date: 05/29/2014
Series: Simulation Foundations, Methods and Applications
Edition description: 2014
Pages: 212
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

About the Author

Dr. Ercan M. Dede is a researcher and manager at the Toyota Research Institute of North America in Ann Arbor, MI, USA. Dr. Jaewook Lee is an Assistant Professor at the School of Aerospace and Mechanical Engineering of Korea Aerospace University, Goyang, South Korea. Dr. Tsuyoshi Nomura is a Senior Researcher at Toyota Central R&D Labs, Nagakute, Japan.

Table of Contents

Introduction.- Overview of Physics for Electromechanical Systems.- Governing Equations for Electromechanical Systems.- Optimization Methods for Electromechanical Systems.- Electromechanical System Simulation and Optimization Studies.- Extensions to New Topics.- Appendix – Sample Multiphysics Optimization Code.

From the B&N Reads Blog

Customer Reviews