Multivariate Statistics : High-Dimensional and Large-Sample Approximations / Edition 1

Hardcover (Print)
Used and New from Other Sellers
Used and New from Other Sellers
from $59.07
Usually ships in 1-2 business days
(Save 58%)
Other sellers (Hardcover)
  • All (7) from $59.07   
  • New (5) from $59.05   
  • Used (2) from $109.95   


Multivariate Statistics: High-Dimensional and Large-Sample Approximations is the first book of its kind to explore how classical multivariate methods can be revised and used in place of conventional statistical tools. Written by prominent researchers in the field, the book focuses on high-dimensional and large-scale approximations and details the many basic multivariate methods used to achieve high levels of accuracy. The authors begin with a fundamental presentation of the basic tools and exact distributional results of multivariate statistics, and, in addition, the derivations of most distributional results are provided. Statistical methods for high-dimensional data, such as curve data, spectra, images, and DNA microarrays, are discussed. Bootstrap approximations from a methodological point of view, theoretical accuracies in MANOVA tests, and model selection criteria are also presented. Subsequent chapters feature additional topical coverage including: High-dimensional approximations of various statistics High-dimensional statistical methods Approximations with computable error bound Selection of variables based on model selection approach Statistics with error bounds and their appearance in discriminant analysis, growth curve models, generalized linear models, profile analysis, and multiple comparison Each chapter provides real-world applications and thorough analyses of the real data. In addition, approximation formulas found throughout the book are a useful tool for both practical and theoretical statisticians, and basic results on exact distributions in multivariate analysis are included in a comprehensive, yet accessible, format. Multivariate Statistics is an excellent book for courses on probability theory in statistics at the graduate level. It is also an essential reference for both practical and theoretical statisticians who are interested in multivariate analysis and who would benefit from learning the applicat

Read More Show Less

Editorial Reviews

From the Publisher
"The book is designed for readers interested in multivariate analysis with a good background in matrix algebra, mathematical statistical inference and probability theory. Its contents are, in general, well organised and the intuitive ideas behind the different multivariate methods, the asymptotic expansion techniques and the calculation of error bounds using scale mixtures, are well expressed . The mathematical proofs are well presented and selected and I have found the mathematical appendices to be very useful as guides to following the proofs." (Mathematical Reviews, 2011)
Read More Show Less

Product Details

Meet the Author

Yasunori Fujikoshi, DSc, is Professor Emeritus at Hiroshima University (Japan) and Visiting Professor in the Department of Mathematics at Chuo University (Japan). He has authored over 150 journal articles in the area of multivariate analysis.

Vladimir V. Ulyanov, DSc, is Professor in the Department of Mathematical Statistics at Moscow State University (Russia) and is the author of nearly fifty journal articles in his areas of research interest, which include weak limit theorems, probability measures on topological spaces, and Gaussian processes.

Ryoichi Shimizu, DSc, is Professor Emeritus at the Institute of Statistical Mathematics (Japan) and is the author of numerous journal articles on probability distributions.

Read More Show Less

Table of Contents


Glossary of Notation and Abbreviations.

1 Multivariate Normal and Related Distributions.

1.1 Random Vectors.

1.1.1 Mean Vector and Covariance Matrix.

1.1.2 Characteristic Function and Distribution.

1.2 Multivariate Normal Distribution.

1.2.1 Bivariate Normal Distribution.

1.2.2 Definition.

1.2.3 Some Properties.

1.3 Spherical and Elliptical Distributions.

1.4 Multivariate Cumulants.


2 Wishart Distribution.

2.1 Definition.

2.2 Some Basic Properties.

2.3 Functions of Wishart Matrices.

2.4 Cochran's Theorem.

2.5 Asymptotic Distributions.


3 Hotelling's T2 and Lambda Statistics.

3.1 Hotelling's T2 and Lambda Statistics.

3.1.1 Distribution of the T2 Statistic.

3.1.2 Decomposition of T2 and D2.

3.2 Lambda-Statistic.

3.2.1 Motivation of Lambda Statistic.

3.2.2 Distribution of Lambda Statistic.

3.3 Test for Additional Information.

3.3.1 Decomposition of Lambda Statistic.


4 Correlation Coefficients.

4.1 Ordinary Correlation Coefficients.

4.1.1 Population Correlation.

4.1.2 Sample Correlation.

4.2 Multiple Correlation Coefficient.

4.2.1 Population Multiple Correlation.

4.2.2 Sample Multiple Correlation.

4.3 Partial Correlation.

4.3.1 Population Partial Correlation.

4.3.2 Sample Partial Correlation.

4.3.3 Covariance Selection Model.


5 Asymptotic Expansions for Multivariate Basic Statistics.

5.1 Edgeworth Expansion and its Validity.

5.2 The Sample Mean Vector and Covariance Matrix.

5.3 T2Statistic.

5.3.1 Outlines of Two Methods.

5.3.2 Multivariate t-Statistic.

5.3.3 Asymptotic Expansions.

5.4 Statistics with a Class of Moments.

5.4.1 Large-Sample Expansions.

5.4.2 High-Dimensional Expansions.

5.5 Perturbation Method.

5.6 Cornish-Fisher Expansions.

5.6.1 Expansion Formulas.

5.6.2 Validity of Cornish-Fisher Expansions.

5.7 Transformations for Improved Approximations.

5.8 Bootstrap Approximations.

5.9 High-Dimensional Approximations.

5.9.1 Limiting Spectral Distribution.

5.9.2 Central Limit Theorem.

5.9.3 Martingale Limit Theorem.

5.9.4 Geometric Representation.


6 MANOVA Models.

6.1 Multivariate One-Way Analysis of Variance.

6.2 Multivariate Two-Way Analysis of Variance.

6.3 MANOVA Tests.

6.3.1 Test Criteria.

6.3.2 Large-Sample Approximations.

6.3.3 Comparison of Powers.

6.3.4 High-Dimensional Approximations.

6.4 Approximations Under Nonnormality.

6.4.1 Asymptotic Expansions.

6.4.2 Bootstrap Tests.

6.5 Distributions of Characteristic Roots.

6.5.1 Exact Distributions.

6.5.2 Large-Sample Case.

6.5.3 High-Dimensional Case.

6.6 Tests for Dimensionality.

6.6.1 Three Test Criteria.

6.6.2 Large-Sample and High-Dimensional Asymptotics.

6.7 High-Dimensional Tests.


7 Multivariate Regression.

7.1 Multivariate Linear Regression Model.

7.2 Statistical Inference.

7.3 Selection of Variables.

7.3.1 Stepwise Procedure.

7.3.2 Cp Criterion.

7.3.3 AIC Criterion.

7.3.4 Numerical Example.

7.4 Principal Component Regression.

7.5 Selection of Response Variables.

7.6 General Linear Hypotheses and Confidence Intervals.

7.7 Penalized Regression Models.


8 Classical and High-Dimensional Tests for Covariance Matrices.

8.1 Specified Covariance Matrix.

8.1.1 Likelihood Ratio Test and Moments.

8.1.2 Asymptotic Expansions.

8.1.3 High-Dimensional Tests.

8.2 Sphericity.

8.2.1 Likelihood Ratio Tests and Moments.

8.2.2 Asymptotic Expansions.

8.2.3 High-Dimensional Tests.

8.3 Intraclass Covariance Structure.

8.3.1 Likelihood Ratio Tests and Moments.

8.3.2 Asymptotic Expansions.

8.3.3 Numerical Accuracy.

8.4 Test for Independence.

8.4.1 Likelihood Ratio Tests and Moments.

8.4.2 Asymptotic Expansions.

8.4.3 High-Dimensional Tests.

8.5 Tests for Equality of Covariance Matrices.

8.5.1 Likelihood Ratio Test and Moments.

8.5.2 Asymptotic Expansions.

8.5.3 High-Dimensional Tests.


9 Discriminant Analysis.

9.1 Classification Rules for Known Distributions.

9.2 Sample Classification Rules for Normal Populations.

9.2.1 Two Normal Populations with S1 = S2.

9.2.2 Case of Several Normal Populations.

9.3 Probability of Misclassifications.

9.3.1 W-Rule.

9.3.2 Z-Rule.

9.3.3 High-Dimensional Asymptotic Results.

9.4 Canonical Discriminant Analysis.

9.4.1 Canonical Discriminant Method.

9.4.2 Test for Additional Information.

9.4.3 Selection of Variables.

9.4.4 Estimation of Dimensionality.

9.5 Regression Approach.

9.6 High-Dimensional Approach.

9.6.1 Penalized Discriminant Analysis.

9.6.2 Other Approaches.


10 Principal Component Analysis.

10.1 Definition of Principal Components.

10.2 Optimality of Principal Components.

10.3 Sample Principal Components.

10.4 MLEs of the Characteristic Roots and Vectors.

10.5 Distributions of the Characteristic Roots.

10.5.1 Exact Distribution.

10.5.2 Large-Sample Case.

10.5.3 High-Dimensional Case.

10.6 Model Selection Approach for Covariance Structures.

10.6.1 General Approach.

10.6.2 Models for Equality of the Smaller Roots.

10.6.3 Selecting a Subset of Original Variables.

10.7 Methods Related to Principal Components.

10.7.1 Fixed-Effect Principal Component Model.

10.7.2 Random-Effect Principal Components Model.


11 Canonical Correlation Analysis.

11.1 Definition of Population Canonical Correlations and Variables.

11.2 Sample Canonical Correlations.

11.3 Distributions of Canonical Correlations.

11.3.1 Distributional Reduction.

11.3.2 Large-Sample Asymptotic Distributions.

11.3.3 High-Dimensional Asymptotic Distributions.

11.3.4 Fisher's z-Transformation.

11.4 Inference for Dimensionality.

11.4.1 Test of Dimensionality.

11.4.2 Estimation of Dimensionality.

11.5 Selection of Variables.

11.5.1 Test for Redundancy.

11.5.2 Selection of Variables.


12 Growth Curve Analysis.

12.1 Growth Curve Model.

12.2 Statistical Inference: One Group.

12.2.1 Test for Adequacy.

12.2.2 Estimation and Test.

12.2.3 Confidence Intervals.

12.3 Statistical Methods: Several Groups.

12.4 Derivation of Statistical Inference.

12.4.1 A General Multivariate Linear Model.

12.4.2 Estimation.

12.4.3 LR Tests for General Linear Hypotheses.

12.4.4 Confidence Intervals.

12.5 Model Selection.

12.5.1 AIC and CAIC.

12.5.2 Derivation of CAIC.

12.5.3 Extended Growth Curve Model.


13 Approximation to the Scale-Mixted Distributions.

13.1 Introduction.

13.1.1 Simple Example: Student's t-Distribution.

13.1.2 Improving the Approximation.

13.2 Error Bounds Evaluated in Sup-Norm.

13.2.1 General Theory.

13.2.2 Scale-Mixed Normal.

13.2.3 Scale-Mixed Gamma.

13.3 Error Bounds Evaluated in L1-Norm.

13.3.1 Some Basic Results.

13.3.2 Scale-Mixed Normal Density.

13.3.3 Scale-Mixed Gamma Density.

13.3.4 Scale-Mixed Chi-square Density.

13.4 Multivariate Scale Mixtures.

13.4.1 General Theory.

13.4.2 Normal Case.

13.4.3 Gamma Case.


14 Approximation to Some Related Distributions.

14.1 Location and Scale Mixtures.

14.2 Maximum of Multivariate Variables.

14.2.1 Distribution of the Maximum Component of a Multivariate Variable.

14.2.2 Multivariate t-Distribution.

14.2.3 Multivariate F-Distribution.

14.3 Scale Mixtures of the F-Distribution.

14.4 Non-Uniform Error Bounds.

14.5 Method of Characteristic Functions.


15 Error Bounds for Approximations of Multivariate Tests.

15.1 Multivariate Scale Mixture and MANOVA Tests.

15.2 A Function of Multivariate Scale Mixture.

15.3 Hotelling's T²0 Statistic.

15.4 Wilk's Lambda Distribution.

15.4.1 Univariate Case.

15.4.2 Multivariate Case.


16 Error Bounds for Approximations to Some Other Statistics.

16.1 Linear Discriminant Function.

16.1.1 Representation as Location and Scale Mixture.

16.1.2 Large-Sample Approximations.

16.1.3 High-Dimensional Approximations.

16.1.4 Some Related Topics.

16.2 Profile Analysis.

16.2.1 Parallelism Model and MLE.

16.2.2 Distributions of γ.

16.2.3 Confidence Interval for γ.

16.3 Estimators in the Growth Curve Model.

16.3.1 Error Bounds.

16.3.2 Distribution of the Bilinear Form.

16.4 Generalized Least Squares Estimators.



A.1 Some Results on Matrices.

A.1.1 Determinants and Inverse Matrices.

A.1.2 Characteristic Roots and Vectors.

A.1.3 Matrix Factorizations.

A.1.4 Idempotent Matrices.

A.2 Inequalities and Max-Min Problems.

A.3 Jacobians of Transformations.



Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)