Muscle Metabolism

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $17.95
Usually ships in 1-2 business days
(Save 92%)
Other sellers (Hardcover)
  • All (9) from $17.95   
  • New (4) from $130.10   
  • Used (5) from $17.95   


Diabetes research on models comprising intact animal tissues, cell cultures and isolated pancreatic islets is essential for understanding the pathogenesis of the disease as well as the mechanisms responsible for the chronic complications associated with it. Enormous advances in the understanding of the development of diabetes and its prevention have recently been derived from work with such animal models. This book presents the state-of-the-art knowledge in the field of diabetes research directed at understanding the mechanisms governing the development of skeletal muscle insulin resistance. Muscle Metabolism will be of significant interest for those researching diabetes at an experimental level in both academia and the pharmaceutical industry. In addition, it will also be of interest to researchers in the fields of obesity, metabolism, endocrinology and molecular biology.

Read More Show Less

Editorial Reviews

Doody's Review Service
Reviewer: Matthew J Brady, Ph.D.(University of Chicago Medical Center)
Description: This book, part of the Frontiers in Animal Diabetes Research series, provides a timely and comprehensive overview of the regulation of energy uptake and utilization in muscle from normal and diabetic models. The chapters are written by leaders in their respective fields, and provides an excellent review for a wide range of researchers, from graduate students entering the area to more established investigators wishing to attain a comprehensive overview of this rapidly moving research field.
Purpose: The purpose is to examine the mechanisms by which insulin resistance develops in skeletal muscle. Since a defect in insulin-stimulated glucose uptake and disposal in skeletal muscle precedes the development of type II diabetes, it is imperative to understand the underlying causes of insulin resistance. The editors have successfully assembled a panel of researchers employing a wide variety of techniques to investigate this subject.
Audience: The chapters are written in a very clear and straightforward manner, making them suitable for graduate students. However, the material is of suitable complexity to make it of interest to more advanced PhD and MD researchers.
Features: A particular strength of this book is the logical organization and progression of subject matter. After reviewing basic features of insulin signaling and glucose transport in skeletal muscle, the book progresses to a more in-depth analysis on how inappropriate substrate utilization may result in the development of insulin resistance. This work is then extended into a series of chapters on both animal and human models of insulin resistance and type II diabetes. The only weakness of the book is the omission of current therapeutic strategies for treating insulin resistance.
Assessment: This book is an excellent resource for any researcher working in the areas of insulin signaling, skeletal muscle metabolism and insulin resistance/type II diabetes. The articles are uniformly clear and informative, with strong figures highlighting important research findings and excellent references for further reading.

4 Stars! from Doody
Read More Show Less

Product Details

Table of Contents

Insulin Signaling. Overview: Tyrosine Kinase Signaling in Insulin Action. Defects in Early Insulin Signaling in Skeletal Muscle. Defects in Intermediate Insulin Signaling in Skeletal Muscle: (PI) 3-kinase and Glucose Transport. Glucose Transport. Glucose Transport in Muscle. The GLUT4 Compartments of Skeletal Muscle. Substrate Utilization. Adverse Metabolic Consequences of Hyperglycemia ("Glucose Toxicity"): Implications for the Pathogenesis of Diabetes Mellitus. Cellular Mediators of Glucose-Induced Autoregulation of Hexose Transport. Physiological Adaptations in Glucose Utilization of Skeletal Muscle. Fatty Acids and Muscle Insulin Resistance. Role of AMP Kinase and Malonyl CoA in Exercise-stimulated Skeletal Muscle Metabolism and Insulin Action. Transgenic and Genetic Models. The Use of Mouse Transgenic and Homologous Recombination Technologies to Analyze the Physiologic Basis of Glucose Homeostasis. Transgenic Approaches to Insulin Signaling. Transgenic Models to Study Glucose Transport and Metabolism in Skeletal Muscle. Diabetic Animals. Insulin Resistance in Skeletal Muscle: a Role for Impaired Insulin Activation of Glycogen Synthase. Muscle GLUT4 Traffic and Insulin Resistant States. Glucose Transport in Heart: Special Emphasis on Insulin Resistance and NIDM. Cellular Redox State and Insulin Sensitivity: Potential Role of Lipoic Acid. Exercise and Aging. Exercise Training and Muscle Insulin Resistance: Cellular Adaptations. Effects of Physical Exercise on the Decreased Insulin Action Caused by Aging. Effects of Aging on Glucose Homeostasis: Cellular Approaches. Application to Humans. Insulin Resistance: Whole Body Mechanisms in Humans. Cellular Mechanisms.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)