Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications / Edition 4

Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications / Edition 4

by Jie Jack Li

ISBN-10: 3642010520

ISBN-13: 9783642010521

Pub. Date: 09/10/2009

Publisher: Springer Berlin Heidelberg

* Many chemists collect named and unnamed reactions and their mechanisms
• Will make this time-consuming effort redundant
• Gives the earliest and latest references to these name reactions
• Gives representative examples in synthesis
• The 4th edition contains more reactions as well as more real case applications in synthesis The


* Many chemists collect named and unnamed reactions and their mechanisms
• Will make this time-consuming effort redundant
• Gives the earliest and latest references to these name reactions
• Gives representative examples in synthesis
• The 4th edition contains more reactions as well as more real case applications in synthesis The third edition of this book contains major improvements over the previous edition. In addition to updated references, each reaction is now supplemented with two to three representative examples in synthesis to showcase its synthetic utility. Biographical sketches for the chemists who discovered or developed those name reactions have been included. Furthemore, the subject index is significantly expanded. This book differs from others on name reactions in organic chemistry by focusing on their mechanisms. It covers over 300 classical as well as contemporary name reactions. Each reaction is delineated by its detailed step-by-step, electron-pushing mechanism, supplemented with the original and the latest references, especially review articles. Thus, it is not only an indispensable resource for senior undergraduate and graduate students for learning and exams, but also a good reference book for all chemists interested in name reactions.

Product Details

Springer Berlin Heidelberg
Publication date:
Edition description:
4th expanded ed. 2009
Product dimensions:
6.30(w) x 9.50(h) x 1.50(d)

Table of Contents

Alder ene reaction.- Aldol condensation.- Algar— Flynn— Oyamada Reaction.- Allan–Robinson reaction.- Arndt—Eistert homologation.- Baeyer–Villiger oxidation.- Baker–Venkataraman rearrangement.- Bamford–Stevens reaction.- Barbier coupling reaction.- Bartoli indole synthesis.- Barton radical decarboxylation.- Barton–McCombie deoxygenation.- Barton nitrite photolysis.- Batcho–Leimgruber indole synthesis.- Baylis–Hillman reaction.- Beckmann rearrangement.- Benzilic acid rearrangement.- Benzoin condensation.- Bergman cyclization.- Biginelli pyrimidone synthesis.- Birch reduction.- Bischler–Möhlau indole synthesis.- Bischler–Napieralski reaction.- Blaise reaction.- Blum–Ittah aziridine synthesis.- Boekelheide reaction.- Boger pyridine synthesis.- Borch reductive amination.- Borsche–Drechsel cyclizations.- Boulton–Katritzky rearrangement.- Bouveault aldehyde synthesis.- Bouveault—Blanc reduction.- Bradsher reaction.- Brook rearrangement.- Brown hydroboration.- Bucherer carbazole synthesis.- Bucherer reaction.- Bucherer—Bergs reaction.- Büchner ring expansion.- Buchwald–Hartwig amination.- Burgess reagent.- Burke boronates.- Cadiot–Chodkiewicz coupling.- Camps quinoline synthesis.- Cannizzaro reaction.- Carroll rearrangement.- Castro–Stephens coupling.- Chan alkyne reduction.- Chan–Lam C–X coupling reaction.- Chapman rearrangement.- Chichibabin pyridine synthesis.- Chugaev elimination.- Ciamician–Dennsted rearrangement.- Claisen condensation.- Claisen isoxazole synthesis.- Claisen rearrangements.- Clemmensen reduction.- Combes quinoline synthesis.- Conrad–Limpach reaction.- Cope elimination reaction.- Cope rearrangement.- Corey–Bakshi–Shibata (CBS) reagent.- Corey–Chaykovsky reaction.- Corey–Fuchs reaction.- Corey–Kim oxidation.- Corey–Nicolaou macrolactonization.- Corey–Seebach reaction.- Corey–Winter olefin synthesis.- Criegee glycol cleavage.- Criegee mechanism of ozonolysis.- Curtius rearrangement.- Dakin oxidation.- Dakin–West reaction.- Darzens condensation.- Delépine amine synthesis.- de Mayo reaction.- Demjanov rearrangement.- Dess–Martin periodinane oxidation.- Dieckmann condensation.- Diels–Alder reaction.- Dienone–phenol rearrangement.- Di–π–methane rearrangement.- Doebner quinoline synthesis.- Doebner–von Miller reaction.- Dötz reaction.- Dowd–Beckwith ring expansion.- Dudley reagent.- Erlenmeyer–Plöchl azlactone synthesis.- Eschenmoser’s salt.- Eschenmoser–Tanabe fragmentation.- Eschweiler–Clarke reductive alkylation of amines.- Evans aldol reaction.- Favorskii rearrangement.- Feist–Bénary furan synthesis.- Ferrier carbocyclization.- Ferrier glycal allylic rearrangement.- Fiesselmann thiophene synthesis.- Fischer indole synthesis.- Fischer oxazole synthesis.- Fleming–Kumada oxidation.- Friedel–Crafts reaction.- Friedländer quinoline synthesis.- Fries rearrangement.- Fukuyama amine synthesis.- Fukuyama reduction.- Gabriel synthesis.- Gabriel–Colman rearrangement.- Gassman indole synthesis.- Gattermann–Koch reaction.- Gewald aminothiophene synthesis.- Glaser coupling.- Gomberg–Bachmann reaction.- Gould–Jacobs reaction.- Grignard reaction.- Grob fragmentation.- Guareschi–Thorpe condensation.- Hajos–Wiechert reaction.- Haller–Bauer reaction.- Hantzsch dihydropyridine synthesis.- Hantzsch pyrrole synthesis.- Heck reaction.- Hegedus indole synthesis.- Hell—Volhard—Zelinsky reaction.- Henry nitroaldol reaction.- Hinsberg synthesis of thiophene derivatives.- Hiyama cross-coupling reaction.- Hofmann rearrangement.- Hofmann–Löffler–Freytag reaction.- Horner—Wadsworth—Emmons reaction.- Houben–Hoesch reaction.- Hunsdiecker–Borodin reaction.- Jacobsen–Katsuki epoxidation.- Japp–Klingemann hydrazone synthesis.- Jones oxidation.- Julia–Kocienski olefination.- Julia–Lythgoe olefination.- Kahne glycosidation.- Knoevenagel condensation.- Knorr pyrazole synthesis.- Koch–Haaf carbonylation.- Koenig–Knorr glycosidation.- Kostanecki reaction.- Kröhnke pyridine synthesis.- Kumada cross-coupling reaction.- Lawesson’s reagent.- Leuckart–Wallach reaction.- Lossen rearrangement.- McFadyen–Stevens reduction.- McMurry coupling.- Mannich reaction.- Martin’s sulfurane dehydrating reagent.- Masamune–Roush conditions for the Horner–Emmons reaction.- Meerwein’s salt.- Meerwein–Ponndorf–Verley reduction.- Meisenheimer complex.- [1,2]-Meisenheimer rearrangement.- [2,3]-Meisenheimer rearrangement.- Meyers oxazoline method.- Meyer–Schuster rearrangement.- Michael addition.- Michaelis–Arbuzov phosphonate synthesis.- Midland reduction.- Minisci reaction.- Mislow–Evans rearrangement.- Mitsunobu reaction.- Miyaura borylation.- Moffatt oxidation.- Morgan–Walls reaction.- Mori–Ban indole synthesis.- Mukaiyama aldol reaction.- Mukaiyama Michael addition.- Mukaiyama reagent.- Myers–Saito cyclization.- Nazarov cyclization.- Neber rearrangement.- Nef reaction.- Negishi cross-coupling reaction.- Nenitzescu indole synthesis.- Newman–Kwart rearrangement.- Nicholas reaction.- Nicolaou IBX dehydrogenation.- Noyori asymmetric hydrogenation.- Nozaki–Hiyama–Kishi reaction.- Nysted reagent.- Oppenauer oxidation.- Overman rearrangement.- Paal thiophene synthesis.- Paal–Knorr furan synthesis.- Paal–Knorr pyrrole synthesis.- Parham cyclization.- Passerini reaction.- Paternó–Büchi reaction.- Pauson–Khand reaction.- Payne rearrangement.- Pechmann coumarin synthesis.- Perkin reaction.- Petasis reaction.- Petasis reagent.- Peterson olefination.- Pictet–Gams isoquinoline synthesis.- Pictet–Spengler tetrahydroisoquinoline synthesis.- Pinacol rearrangement.- Pinner reaction.- Polonovski reaction.- Polonovski–Potier reaction.- Pomeranz–Fritsch reaction.- Prévost trans-dihydroxylation.- Prins reaction.- Pschorr cyclization.- Pummerer rearrangement.- Ramberg–Bäcklund reaction.- Reformatsky reaction.- Regitz diazo synthesis.- Reimer–Tiemann reaction.- Reissert reaction.- Reissert indole synthesis.- Ring-closing metathesis (RCM).- Ritter reaction.- Robinson annulation.- Robinson–Gabriel synthesis.- Robinson–Schöpf reaction.- Rosenmund reduction.- Rubottom oxidation.- Rupe rearrangement.- Saegusa oxidation.- Sakurai allylation reaction.- Sandmeyer reaction.- Schiemann reaction.- Schmidt rearrangement.- Schmidt’s trichloroacetimidate glycosidation reaction.- Shapiro reaction.- Sharpless asymmetric amino-hydroxylation.- Sharpless asymmetric dihydroxylation.- Sharpless asymmetric epoxidation.- Sharpless olefin synthesis.- Simmons–Smith reaction.- Skraup quinoline synthesis.- Smiles rearrangement.- Sommelet reaction.- Sommelet–Hauser rearrangement.- Sonogashira reaction.- Staudinger ketene cycloaddition.- Staudinger reduction.- Stetter reaction.- Still–Gennari phosphonate reaction.- Stille coupling.- Stille–Kelly reaction.- Stobbe condensation.- Strecker amino acid synthesis.- Suzuki–Miyaura coupling.- Swern oxidation.- Takai reaction.- Tebbe’s reagent.- TEMPO oxidation.- Thorpe–Ziegler reaction.- Tsuji–Trost reaction.- Ugi reaction.- Ullmann coupling.- van Leusen oxazole synthesis.- Vilsmeier– Haack reaction.- Vinylcyclopropane–cyclopentene rearrangement.- von Braun reaction.- Wacker oxidation.- Wagner–Meerwein rearrangement.- Weiss–Cook reaction.- Wharton reaction.- White Reagent.- Willgerodt–Kindler reaction.- Wittig reaction.- [1,2]-Wittig rearrangement.- [2,3]-Wittig rearrangement.- Wohl–Ziegler reaction.- Wolff rearrangement.- Wolff–Kishner reduction.- Woodward cis-dihydroxylation.- Yamaguchi esterification.- Zincke reaction.

Customer Reviews

Average Review:

Write a Review

and post it to your social network


Most Helpful Customer Reviews

See all customer reviews >