Neural Network Computing for the Electric Power Industry: Proceedings of the 1992 INNS Summer Workshop

Overview

Power system computing with neural networks is one of the fastest growing fields in the history of power system engineering. Since 1988, a considerable amount of work has been done in investigating computing capabilities of neural networks and understanding their relevance to providing efficient solutions for outstanding complex problems of the electric power industry. A principal objective of a power utility is to provide electric energy to its customers in a secure, reliable and economic manner. Toward this ...

See more details below
This Hardcover is Not Available through BN.com
Neural Network Computing for the Electric Power Industry: Proceedings of the 1992 Inns Summer Workshop

Available on NOOK devices and apps  
  • NOOK Devices
  • Samsung Galaxy Tab 4 NOOK
  • NOOK HD/HD+ Tablet
  • NOOK
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac

Want a NOOK? Explore Now

NOOK Book (eBook)
$60.00
BN.com price

Overview

Power system computing with neural networks is one of the fastest growing fields in the history of power system engineering. Since 1988, a considerable amount of work has been done in investigating computing capabilities of neural networks and understanding their relevance to providing efficient solutions for outstanding complex problems of the electric power industry. A principal objective of a power utility is to provide electric energy to its customers in a secure, reliable and economic manner. Toward this aim, utility personnel are engaged in a variety of activities in areas of supervisory control and monitoring, evaluation of operating conditions, operation planning and scheduling, system development, equipment testing, etc. Over the past decades significant advances have been made in the development of new concepts, design of hardware and software systems, and implementation of solid-state devices which all contributed to the steadily improving power system performance that we are experiencing today. Advanced information processing technologies played an important role in these development efforts.

Members of the Special Interest Group for Power Engineering of the INNS recognized the need for bringing together leading researchers in the field of neurocomputing with experts from power utilities and manufacturing companies to assess the current state of affairs and to explore the directions of further research and practice. This book is based on The Summer Workshop on Neural Network Computing for the Electric Power Industry which brought together approximately forty specialists with backgrounds in power engineering, system operation and planning, neural network theory and AI systems design. An informal and highly inspiring atmosphere of the workshop facilitated open discussion and exchange of expertise between the participants.

Read More Show Less

Product Details

Table of Contents

Contents: D. Sobajic, Foreword. Part I:Perspectives. Y-H. Pao, G-H. Park, Learning and Generalization Characteristics of the Random Vector Functional-Link Net. C-C. Liu, M. Damborg, Artificial Neural Networks and Expert Systems in the Power System Operation Environment. E. Bradley, A Utility Perspective on Neural Networks, Fuzzy Logic, and Artificial Intelligence. Part II:Neural Network Methodologies. B. Widrow, M.A. Lehr, Backpropagation and Its Applications. F. Beaufays, E.A. Wan, Using Flow Graph Interreciprocity to Relate Recurrent-Backpropagation and Backpropagation-Through-Time. A. Guha, Neural Network Based Inferential Sensing and Instrumentation. S.A. Harp, T. Samad, Optimizing Neural Networks Using Genetic Algorithms. Part III:Nuclear Power Plants. R. Uhrig, Potential Use of Neural Networks in Nuclear Power Plants. M. Khadem, A. Ipakchi, F.J. Alexandro, R.W. Colley, Sensor Validation in Power Plants Using Neural Networks. A. Ikonomopoulos, L. Tsoukalas, R. Uhrig, Measuring Fuzzy Variables in a Nuclear Reactor Using Artificial Neural Networks. Y.D. Lukic, C.R. Stevens, J. Si, Application of a Real Time Artificial Neural Network for Classifying Nuclear Power Plant Transient Events. J.A. Boshers, C.H.M. Saylor, S. Kamadolli, R. Wood, C. Isik, Control Rod Wear Recognition Using Neural Nets. R. Doremus, Severe Accident Management System On-Line Network (SAMSON). Part IV:Power System Operation. H. Ren-mu, A.J. Germond, Comparison of Dynamic Load Models Extrapolation Using Neural Networks and Traditional Methods. B. Avramovic, On Neural Network Voltage Assessment. D. Sobajic, Y-H. Pao, M. Djukanovic, Neural Network Synthesis of Tangent Hypersurfaces for Transient Security Assessment of Electric Power Systems. D. Niebur, A.J. Germond, Power System Static Security Assessment Using the Kohonen Neural Network Classifier. H. Mori, Voltage Stability Monitoring with Artificial Neural Networks. D. Novosel, A.B. Boveri, R.L. King, Intelligent Load Shedding. E. Chan, N. Markushevich, R. Adapa, Considerations in Intelligent Alarm Processing. Part V:Modeling and Prediction. D.J. Sobajic, Y-H. Pao, D.T. Lee, Predictive Security Monitoring with Neural Networks. A.G. Parlos, A.D. Patton, Empirical Modeling in Power Engineering Using the Recurrent Multilayer Perceptron Network. T. Samad, Modeling and Identification with Neural Networks. E. Wan, Autoregressive Neural Network Prediction: Learning Chaotic Time Series and Attractors. Part VI:Control. B. Widrow, F. Beaufays, Neural Control Systems. R.L. King, M.L. Oatts, Potential Uses of Intelligent and Adaptive Controls for Electric Power System Operations in the Year 2000 and Beyond. F. Beaufays, B. Widrow, Load-Frequency Control Using Neural Networks. L.L. Adams, Reinforcement Learning for Adaptive Control. Part VII:Load Forecasting. A.J. Germond, N. Macabrey, T. Baumann, Application of Artificial Neural Networks to Load Forecasting. M. Khadem, A. Lago, E. Dobrowolski, Short-Term Electric Load Forecasting Using Neural Networks. J.Y. Cheung, J. Fagan, D.C. Chance, Load Forecasting by Hierarchical Neural Networks that Incorporate Known Load Characteristics. Part VIII:Scheduling and Optimization. H. Sasaki, Y. Takiuchi, J. Kubokawa, A Solution Method for Maintenance Scheduling of Thermal Units by Artificial Neural Networks. H. Saitoh, Y. Shimotori, J. Toyoda, Generation Dispatch Algorithm Coordinating Economy and Stability by Using Artificial Neural Networks. Part IX:Fault Diagnosis. T. Baumann, A.J. Germond, D. Tschudi, Impulse Test Fault Diagnosis on Power Transformers Using Kohonen's Self-Organizing Neural Network. Y. Du, F. Wang, T.C. Cheng, A Case Study of Neural Network Application: Power Equipment Application Failure. A. Agogino, M-L. Tseng, P. Jain, Integrating Neural Networks with Influence Diagrams for Power Plant Monitoring and Diagnostics. W.L. Biach, Use of Neural Network in Optimizing RPV Bolting Procedures.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)