Neural Networks and Qualitative Physics: A Viability Approach
This book is devoted to some mathematical methods that arise in two domains of artificial intelligence: neural networks and qualitative physics. Professor Aubin makes use of control and viability theory in neural networks and cognitive systems, regarded as dynamical systems controlled by synaptic matrices, and set-valued analysis that plays a natural and crucial role in qualitative analysis and simulation. This allows many examples of neural networks to be presented in a unified way. In addition, several results on the control of linear and nonlinear systems are used to obtain a "learning algorithm" of pattern classification problems, such as the back-propagation formula, as well as learning algorithms of feedback regulation laws of solutions to control systems subject to state constraints.
1100949754
Neural Networks and Qualitative Physics: A Viability Approach
This book is devoted to some mathematical methods that arise in two domains of artificial intelligence: neural networks and qualitative physics. Professor Aubin makes use of control and viability theory in neural networks and cognitive systems, regarded as dynamical systems controlled by synaptic matrices, and set-valued analysis that plays a natural and crucial role in qualitative analysis and simulation. This allows many examples of neural networks to be presented in a unified way. In addition, several results on the control of linear and nonlinear systems are used to obtain a "learning algorithm" of pattern classification problems, such as the back-propagation formula, as well as learning algorithms of feedback regulation laws of solutions to control systems subject to state constraints.
170.0 In Stock
Neural Networks and Qualitative Physics: A Viability Approach

Neural Networks and Qualitative Physics: A Viability Approach

by Jean-Pierre Aubin
Neural Networks and Qualitative Physics: A Viability Approach

Neural Networks and Qualitative Physics: A Viability Approach

by Jean-Pierre Aubin

Hardcover

$170.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book is devoted to some mathematical methods that arise in two domains of artificial intelligence: neural networks and qualitative physics. Professor Aubin makes use of control and viability theory in neural networks and cognitive systems, regarded as dynamical systems controlled by synaptic matrices, and set-valued analysis that plays a natural and crucial role in qualitative analysis and simulation. This allows many examples of neural networks to be presented in a unified way. In addition, several results on the control of linear and nonlinear systems are used to obtain a "learning algorithm" of pattern classification problems, such as the back-propagation formula, as well as learning algorithms of feedback regulation laws of solutions to control systems subject to state constraints.

Product Details

ISBN-13: 9780521445320
Publisher: Cambridge University Press
Publication date: 03/29/1996
Pages: 302
Product dimensions: 6.30(w) x 9.33(h) x 0.75(d)

Table of Contents

1. Neural networks: a control approach; 2. Pseudo-inverses and tensor products; 3. Associative memories; 4. The gradient method; 5. Nonlinear neural networks; 6. External learning algorithm of feedback controls; 7. Internal learning algorithm of feedback controls; 8. Learning processes of cognitive systems; 9. Qualitative analysis of static problems; 10. Dynamical qualitative simulation.
From the B&N Reads Blog

Customer Reviews