NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology / Edition 1

Hardcover (Print)
Buy New
Buy New from BN.com
Used and New from Other Sellers
Used and New from Other Sellers
from $133.69
Usually ships in 1-2 business days
(Save 24%)
Other sellers (Hardcover)
  • All (6) from $133.69   
  • New (3) from $139.87   
  • Used (3) from $133.69   


NMR Spectroscopy Explained : Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology provides a fresh, practical guide to NMR for both students and practitioners, in a clearly written and non-mathematical format. It gives the reader an intermediate level theoretical basis for understanding laboratory applications, developing concepts gradually within the context of examples and useful experiments.

  • Introduces students to modern NMR as applied to analysis of organic compounds.
  • Presents material in a clear, conversational style that is appealing to students.
  • Contains comprehensive coverage of how NMR experiments actually work.
  • Combines basic ideas with practical implementation of the spectrometer.
  • Provides an intermediate level theoretical basis for understanding laboratory experiments.
  • Develops concepts gradually within the context of examples and useful experiments.
  • Introduces the product operator formalism after introducing the simpler (but limited) vector model.
Read More Show Less

Editorial Reviews

From the Publisher
"The uses of the many modern multiple NMW techniques are explained and demonstrated quite well." (CHOICE, September 2008)
Read More Show Less

Product Details

  • ISBN-13: 9780471730965
  • Publisher: Wiley
  • Publication date: 8/31/2007
  • Edition description: New Edition
  • Edition number: 1
  • Pages: 688
  • Product dimensions: 7.46 (w) x 9.82 (h) x 1.54 (d)

Meet the Author

Neil E. Jacobsen, PHD, is the NMR Facility Manager in the Department of Chemistry at the University of Arizona in Tucson, where he also teaches graduate-level NMR courses. He received his PhD in organic chemistry at the University of California-Berkeley and gained experience in protein NMR spectroscopy at the University of Washington and at Genentech, Inc.

Read More Show Less

Table of Contents



1 Fundamentalsof NMR Spectroscopy in Liquids.

1.1 Introduction to NMR Spectroscopy.

1.2 Examples: NMR Spectroscopy of Oligosaccharides andTerpenoids.

1.3 Typical Values of Chemical Shifts and CouplingConstants.

1.4 Fundamental Concepts of NMR Spectroscopy.

2 Interpretation of Proton (1H) NMR Spectra.

2.1 Assignment.

2.2 Effect of Bo Field Strength on the Spectrum.

2.3 First-Order Splitting Patterns.

2.4 The Use of 1H–1H Coupling Constants to DetermineStereochemistry and Conformation.

2.5 Symmetry and Chirality in NMR.

2.6 The Origin of the Chemical Shift.

2.7 J Coupling to Other NMR-Active Nuclei.

2.8 Non-First-Order Splitting Patterns: Strong Coupling.

2.9 Magnetic Equivalence.

3 NMR Hardware and Software.

3.1 Sample Preparation.

3.2 Sample Insertion.

3.3 The Deuterium Lock Feedback Loop.

3.4 The Shim System.

3.5 Tuning and Matching the Probe.

3.6 NMR Data Acquisition and Acquisition Parameters.

3.7 Noise and Dynamic Range.

3.8 Special Topic: Oversampling and Digital Filtering.

3.9 NMR Data Processing—Overview.

3.10 The Fourier Transform.

3.11 Data Manipulation Before the Fourier Transform.

3.12 Data Manipulation After the Fourier Transform.

4 Carbon-13 (13C) NMR Spectroscopy.

4.1 Sensitivity of 13C.

4.2 Splitting of 13C Signals.

4.3 Decoupling.

4.4 Heteronuclear Decoupling: 1H Decoupled 13CSpectra.

4.5 Decoupling Hardware.

4.6 Decoupling Software: Parameters.

4.7 The Nuclear Overhauser Effect (NOE).

4.8 Heteronuclear Decoupler Modes.

5 NMR Relaxation—Inversion-Recovery and the NuclearOverhauser Effect (NOE).

5.1 The Vector Model.

5.2 One Spin in a Magnetic Field.

5.3 A Large Population of Identical Spins: NetMagnetization.

5.4 Coherence: Net Magnetization in the xyPlane.

5.5 Relaxation.

5.6 Summary of the Vector Model.

5.7 Molecular Tumbling and NMR Relaxation.

5.8 Inversion-Recovery: Measurement of T1Values.

5.9 Continuous-Wave Low-Power Irradiation of One Resonance.

5.10 Homonuclear Decoupling.

5.11 Presaturation of Solvent Resonance.

5.12 The Homonuclear Nuclear Overhauser Effect (NOE).

5.13 Summary of the Nuclear Overhauser Effect.

6 The Spin Echo and the Attached Proton Test (APT).

6.1 The Rotating Frame of Reference.

6.2 The Radio Frequency (RF) Pulse.

6.3 The Effect of RF Pulses.

6.4 Quadrature Detection, Phase Cycling, and the ReceiverPhase.

6.5 Chemical Shift Evolution.

6.6 Scalar (J) Coupling Evolution.

6.7 Examples of J-coupling and Chemical ShiftEvolution.

6.8 The Attached Proton Test (APT).

6.9 The Spin Echo.

6.10 The Heteronuclear Spin Echo: Controlling J-CouplingEvolution and Chemical Shift Evolution.

7 Coherence Transfer: INEPT and DEPT.

7.1 Net Magnetization.

7.2 Magnetization Transfer.

7.3 The Product Operator Formalism: Introduction.

7.4 Single Spin Product Operators: Chemical Shift Evolution.

7.5 Two-Spin Operators: J-coupling Evolution andAntiphase Coherence.

7.6 The Effect of RF Pulses on Product Operators.

7.7 INEPT and the Transfer of Magnetization from 1Hto 13C.

7.8 Selective Population Transfer (SPT) as a Way ofUnderstanding INEPT Coherence Transfer.

7.9 Phase Cycling in INEPT.

7.10 Intermediate States in Coherence Transfer.

7.11 Zero- and Double-Quantum Operators.

7.12 Summary of Two-Spin Operators.

7.13 Refocused INEPT: Adding Spectral Editing.

7.14 DEPT: Distortionless Enhancement by PolarizationTransfer.

7.15 Product Operator Analysis of the DEPT Experiment.

8 Shaped Pulses, Pulsed Field Gradients, and Spin Locks:Selective 1D NOE and 1D TOCSY.

8.1 Introducing Three New Pulse Sequence Tools.

8.2 The Effect of Off-Resonance Pulses on Net Magnetization.

8.3 The Excitation Profile for Rectangular Pulses.

8.4 Selective Pulses and Shaped Pulses.

8.5 Pulsed Field Gradients.

8.6 Combining Shaped Pulses and Pulsed Field Gradients:"Excitation Sculpting."

8.7 Coherence Order: Using Gradients to Select a CoherencePathway.

8.8 Practical Aspects of Pulsed Field Gradients and ShapedPulses.

8.9 1D Transient NOE using DPFGSE.

8.10 The Spin Lock.

8.11 Selective 1D ROESY and 1D TOCSY.

8.12 Selective 1D TOCSY using DPFGSE.

8.13 RF Power Levels for Shaped Pulses and Spin Locks.

9 Two-Dimensional NMR Spectroscopy: HETCOR, COSY, andTOCSY.

9.1 Introduction to Two-Dimensional NMR.

9.2 HETCOR: A 2D Experiment Created from the 1D INEPTExperiment.

9.3 A General Overview of 2D NMR Experiments.

9.4 2D Correlation Spectroscopy (COSY).

9.5 Understanding COSY with Product Operators.

9.6 2D TOCSY (Total Correlation Spectroscopy).

9.7 Data Sampling in t1 and the 2D Spectral Window.

10 Advanced NMR Theory: NOESY and DQF-COSY.

10.1 Spin Kinetics: Derivation of the Rate Equation forCross-Relaxation.

10.2 Dynamic Processes and Chemical Exchange in NMR.

10.3 2D NOESY and 2D ROESY.

10.4 Expanding Our View of Coherence: Quantum Mechanics andSpherical Operators.

10.5 Double-Quantum Filtered COSY (DQF-COSY).

10.6 Coherence Pathway Selection in NMR Experiments.

10.7 The Density Matrix Representation of Spin States.

10.8 The Hamiltonian Matrix: Strong Coupling and Ideal Isotropic(TOCSY) Mixing.

11 Inverse Heteronuclear 2D Experiments: HSQC, HMQC, andHMBC.

11.1 Inverse Experiments: 1H Observe with 13C Decoupling.

11.2 General Appearance of Inverse 2D Spectra.

11.3 Examples of One-Bond Inverse Correlation (HMQC and HSQC)Without 13C Decoupling.

11.4 Examples of Edited, 13C-Decoupled HSQC Spectra.

11.5 Examples of HMBC Spectra.

11.6 Structure Determination Using HSQC and HMBC.

11.7 Understanding the HSQC Pulse Sequence.

11.8 Understanding the HMQC Pulse Sequence.

11.9 Understanding the Heteronuclear Multiple-Bond Correlation(HMBC) Pulse Sequence.

11.10 Structure Determination by NMR—An Example.

12 Biological NMR Spectroscopy.

12.1 Applications of NMR in Biology.

12.2 Size Limitations in Solution-State NMR.

12.3 Hardware Requirements for Biological NMR.

12.4 Sample Preparation and Water Suppression.

12.5 1H Chemical Shifts of Peptides and Proteins.

12.6 NOE Interactions Between One Residue and the Next Residuein the Sequence.

12.7 Sequence-Specific Assignment Using Homonuclear 2DSpectra.

12.8 Medium and Long-Range NOE Correlations.

12.9 Calculation of 3D Structure Using NMR Restraints.

12.10 15N-Labeling and 3D NMR.

12.11 Three-Dimensional NMR Pulse Sequences: 3D HSQC–TOCSYand 3D TOCSY–HSQC.

12.12 Triple-Resonance NMR on Doubly-Labeled (15N, 13C)Proteins.

12.13 New Techniques for Protein NMR: Residual Dipolar Couplingsand Transverse Relaxation Optimized Spectroscopy (TROSY).

Appendix A: A Pictorial Key to NMR SpinStates.

Appendix B: A Survey of Two-Dimensional NMRExperiments.


Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)