Nonlinear Identification and Control: A Neural Network Approach / Edition 1

Nonlinear Identification and Control: A Neural Network Approach / Edition 1

by G.P. Liu
     
 

ISBN-10: 1852333421

ISBN-13: 9781852333423

Pub. Date: 10/25/2001

Publisher: Springer London

The purpose of this monograph is to give the broad aspects of nonlinear identification and control using neural networks. It uses a number of simulated and industrial examples throughout, to demonstrate the operation of nonlinear identification and control techniques using neural networks.

 See more details below

Overview

The purpose of this monograph is to give the broad aspects of nonlinear identification and control using neural networks. It uses a number of simulated and industrial examples throughout, to demonstrate the operation of nonlinear identification and control techniques using neural networks.

Product Details

ISBN-13:
9781852333423
Publisher:
Springer London
Publication date:
10/25/2001
Series:
Advances in Industrial Control Series
Edition description:
2001
Pages:
210
Product dimensions:
0.63(w) x 6.14(h) x 9.21(d)

Table of Contents

1. Neural Networks.- 1.1 Introduction.- 1.2 Model of a Neuron.- 1.3 Architectures of Neural Networks.- 1.3.1 Single Layer Networks.- 1.3.2 Multilayer Networks.- 1.3.3 Recurrent Networks.- 1.3.4 Lattice Networks.- 1.4 Various Neural Networks.- 1.4.1 Radial Basis Function Networks.- 1.4.2 Gaussian RBF Networks.- 1.4.3 Polynomial Basis Function Networks.- 1.4.4 Fuzzy Neural Networks.- 1.4.5 Wavelet Neural Networks.- 1.4.6 General Form of Neural Networks.- 1.5 Learning and Approximation.- 1.5.1 Background to Function Approximation.- 1.5.2 Universal Approximation.- 1.5.3 Capacity of Neural Networks.- 1.5.4 Generalisation of Neural Networks.- 1.5.5 Error Back Propagation Algorithm.- 1.5.6 Recursive Learning Algorithms.- 1.5.7 Least Mean Square Algorithm.- 1.6 Applications of Neural Networks.- 1.6.1 Classification.- 1.6.2 Filtering.- 1.6.3 Modelling and Prediction.- 1.6.4 Control.- 1.6.5 Hardware Implementation.- 1.7 Mathematical Preliminaries.- 1.8 Summary.- 2. Sequential Nonlinear Identification.- 2.1 Introduction.- 2.2 Variable Neural Networks.- 2.2.1 Variable Grids.- 2.2.2 Variable Networks.- 2.2.3 Selection of Basis Functions.- 2.3 Dynamical System Modelling by Neural Networks.- 2.4 Stable Nonlinear Identification.- 2.5 Sequential Nonlinear Identification.- 2.6 Sequential Identification of Multivariable Systems.- 2.7 An Example.- 2.8 Summary.- 3. Recursive Nonlinear Identification.- 3.1 Introduction.- 3.2 Nonlinear Modelling by VPBF Networks.- 3.3 Structure Selection of Neural Networks.- 3.3.1 Off-line Structure Selection.- 3.3.2 On-line Structure Selection.- 3.4 Recursive Learning of Neural Networks.- 3.5 Examples.- 3.6 Summary.- 4. Multiobjective Nonlinear Identification.- 4.1 Introduction.- 4.2 Multiobjective Modelling with Neural Networks.- 4.3 Model Selection by Genetic Algorithms.- 4.3.1 Genetic Algorithms.- 4.3.2 Model Selection.- 4.4 Multiobjective Identification Algorithm.- 4.5 Examples.- 4.6 Summary.- 5. Wavelet Based Nonlinear Identification.- 5.1 Introduction.- 5.2 Wavelet Networks.- 5.2.1 One-dimensional Wavelets.- 5.2.2 Multi-dimensional Wavelets.- 5.2.3 Wavelet Networks.- 5.3 Identification Using Fixed Wavelet Networks.- 5.4 Identification Using Variable Wavelet Networks.- 5.4.1 Variable Wavelet Networks.- 5.4.2 Parameter Estimation.- 5.5 Identification Using B-spline Wavelets.- 5.5.1 One-dimensional B-spline Wavelets.- 5.5.2 n-dimensional B-spline Wavelets.- 5.6 An Example.- 5.7 Summary.- 6. Nonlinear Adaptive Neural Control.- 6.1 Introduction.- 6.2 Adaptive Control.- 6.3 Adaptive Neural Control.- 6.4 Adaptation Algorithm with Variable Networks.- 6.5 Examples.- 6.6 Summary.- 7. Nonlinear Predictive Neural Control.- 7.1 Introduction.- 7.2 Predictive Control.- 7.3 Nonlinear Neural Predictors.- 7.4 Predictive Neural Control.- 7.5 On-line Learning of Neural Predictors.- 7.6 Sequential Predictive Neural Control.- 7.7 An Example.- 7.8 Summary.- 8. Variable Structure Neural Control.- 8.1 Introduction.- 8.2 Variable Structure Control.- 8.3 Variable Structure Neural Control.- 8.4 Generalised Variable Structure Neural Control.- 8.5 Recursive Learning for Variable Structure Control.- 8.6 An Example.- 8.7 Summary.- 9. Neural Control Application to Combustion Processes.- 9.1 Introduction.- 9.2 Model of Combustion Dynamics.- 9.3 Neural Network Based Mode Observer.- 9.4 Output Predictor and Controller.- 9.5 Active Control of a Simulated Combustor.- 9.6 Active Control of an Experimental Combustor.- 9.7 Summary.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >