Nonlinear Signal Processing: A Statistical Approach / Edition 1

Hardcover (Print)
Buy New
Buy New from
Used and New from Other Sellers
Used and New from Other Sellers
from $103.86
Usually ships in 1-2 business days
(Save 28%)
Other sellers (Hardcover)
  • All (8) from $103.86   
  • New (7) from $103.86   
  • Used (1) from $126.35   


Nonlinear Signal Processing: A Statistical Approach focuses on unifying the study of a broad and important class of nonlinear signal processing algorithms which emerge from statistical estimation principles, and where the underlying signals are non-Gaussian, rather than Gaussian, processes. Notably, by concentrating on just two non-Gaussian models, a large set of tools is developed that encompass a large portion of the nonlinear signal processing tools proposed in the literature over the past several decades.

Key features include:
* Numerous problems at the end of each chapter to aid development and understanding
* Examples and case studies provided throughout the book in a wide range of applications bring the text to life and place the theory into context
* A set of 60+ MATLAB software m-files allowing the reader to quickly design and apply any of the nonlinear signal processing algorithms described in the book to an application of interest is available on the accompanying FTP site.

Read More Show Less

Editorial Reviews

From the Publisher
"This book will be a valuable textbook for students and researchers interested in learning nonlinear signal processing techniques designed to be robust against heavy-tailed error distributions." (Journal of the American Statistician, December 2008)

"This comprehensive book…will be a good reference for both the trained statisticians and engineers." (Technometrics, February 2006)

Read More Show Less

Product Details

  • ISBN-13: 9780471676249
  • Publisher: Wiley
  • Publication date: 10/22/2004
  • Edition description: BK&CD-ROM
  • Edition number: 1
  • Pages: 480
  • Product dimensions: 6.36 (w) x 9.25 (h) x 1.18 (d)

Meet the Author

GONZALO R. ARCE received a PhD degree in electrical engineering from Purdue University in 1982. Since 1982, he has been with the faculty of the Department of Electrical and Computer Engineering at the University of Delaware where he is currently Charles Black Evans Distinguished Professor and Chairman. He has held visiting professor appointments at the Unisys Corporate Research Center and at the International Center for Signal and Image Processing, Tampere University of Technology, in Tampere, Finland. He holds seven U.S. patents, and his research has been funded by DoD, NSF, and numerous industrial organizations. He is an IEEE Fellow for his contributions to the theory and applications of nonlinear signal processing.

Read More Show Less

Table of Contents




1. Introduction.

1.1 Non-Gaussian Random Processes.

1.1.1 Generalized Gaussian Distributions and Weighted Medians.

1.1.2 Stable Distributions and Weighted Myriads.

1.2 Statistical Foundations.

1.3 The Filtering Problem.

1.3.1 Moment Theory.


2. Non-Gaussian Models.

2.1 Generalized Gaussian Distributions.

2.2 Stable Distributions.

2.2.1 Definitions.

2.2.2 Symmetric Stable Distributions.

2.2.3 Generalized Central Limit Theorem.

2.2.4 Simulation of Stable Sequences.

2.3 Lower Order Moments.

2.3.1 Fractional Lower Order Moments.

2.3.2 Zero Order Statistics.

2.3.3 Parameter Estimation of Stable Distributions.


3. Order Statistics.

3.1 Distributions of Order Statistics.

3.2 Moments of Order Statistics.

3.2.1 Order Statistics From Uniform Distributions.

3.2.2 Recurrence Relations.

3.3 Order Statistics Containing Outliers.

3.4 Joint Statistics of Ordered and Non-Ordered Samples.


4. Statistical Foundations of Filtering.

4.1 Properties of Estimators.

4.2 Maximum Likelihood Estimation.

4.3 Robust Estimation.



5. Median and Weighted Median Smoothers.

5.1 Running Median Smoothers.

5.1.1 Statistical Properties.

5.1.2 Root Signals (Fixed Points).

5.2 Weighted Median Smoothers.

5.2.1 The Center Weighted Median Smoother.

5.2.2 Permutation Weighted Median Smoothers.

5.3 Threshold Decomposition Representation.

5.3.1 Stack Smoothers.

5.4 Weighted Medians in Least Absolute Deviation (LAD) Regression.

5.4.1 Foundation and Cost Functions.

5.4.2 LAD Regression with Weighted Medians.

5.4.3 Simulation.


6. Weighted Median Filters.

6.1 Weighted Median Filters With Real-Valued Weights.

6.1.1 Permutation Weighted Median Filters.

6.2 Spectral Design of Weighted Median Filters.

6.2.1 Median Smoothers and Sample Selection Probabilities.

6.2.2 SSPs for Weighted Median Smoothers.

6.2.3 Synthesis of WM Smoothers.

6.2.4 General Iterative Solution.

6.2.5 Spectral Design of Weighted Median Filters Admitting Real-Valued Weights.

6.3 The Optimal Weighted Median Filtering Problem.

6.3.1 Threshold Decomposition for Real-Valued Signals.

6.3.2 The Least Mean Absolute (LMA) Algorithm.

6.4 Recursive Weighted Median Filters.

6.4.1 Threshold Decomposition Representation of Recursive WM Filters.

6.4.2 Optimal Recursive Weighted Median Filtering.

6.5 Mirrored Threshold Decomposition and Stack Filters.

6.5.1 Stack Filters.

6.5.2 Stack Filter Representation of Recursive WM Filters.

6.6 Complex Valued Weighted Median Filter.

6.6.1 Phase Coupled Complex WM Filters.

6.6.2 Marginal Phase Coupled Complex WM Filter.

6.6.3 Complex Threshold Decomposition.

6.6.4 Optimal Marginal Phase Coupled Complex WM.

6.6.5 Spectral Design of Complex Valued Weighted Medians.

6.7 Weighted Median Filters for Multichannel Signals.

6.7.1 Marginal WM Filter.

6.7.2 Vector WM Filter.

6.7.3 Weighted Multichannel Median Filtering Structures.

6.7.4 Filter Optimization.


7. Linear Combination or Order Statistics.

7.1 L-Estimates of Location.

7.2 L-Smoothers.

7.3 Ll-Filters.

7.3.1 Design and Optimization of Ll Filters.

7.4 Ljℓ Permutation Filters.

7.5 Hybrid Median/Linear FIR Filters.

7.5.1 Median and FIR Affinity Trimming.

7.6 Linear Combination of Weighted Medians.

7.6.1 LCWM Filters.

7.6.2 Design of LCWM Filters.

7.6.3 Symmetric LCWM Filters.



8. Myriad Smoothers.

8.1 FLOM Smoothers.

8.2 Running Myriad Smoothers.

8.3 Optimality of the Sample Myriad.

8.4 Weighted Myriad Smoothers.

8.5 Fast Weighted Myriad Computation.

8.6 Weighted Myriad Smoother Design.

8.6.1 Center Weighted Myriads for Image Denoising.

8.6.2 Myriadization.


9. Weighted Myriad Filters.

9.1 Weighted Myriad Filters with Real-Valued Weights.

9.2 Fast Real-Valued Weighted Myriad Computation.

9.3 Weighted Myriad Filter Design.

9.3.1 Myriadization.

9.3.2 Optimization.



Appendix A: Software Guide.


Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing 1 Customer Reviews
  • Anonymous

    Posted November 11, 2004

    A comprehensive book in the field and software, finally!

    I have been searching for a book that covers the fundamentals on the topic all the way to more advanced topics on nonlinear dsp. This book is perfect for someone like me who is interested in learning the field, broadly. Other books I looked at seemed too specialized without the basics or simply a gathering of test cases. The software provided is a BIG plus as I can apply the various tools directly on my applications without programming delays.

    Was this review helpful? Yes  No   Report this review
Sort by: Showing 1 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)