Nothing: From Zero to Oblivion--Science at the Frontiers of Nothingness

Overview

Incredible discoveries from the fringes of the universe to the inner workings of our minds—all from nothing!


It turns out that almost nothing is as curious—or as enlightening—as, well, nothing. What is nothingness? Where can it be found? The writers of the world's top-selling science magazine investigate—from the big bang, dark energy, and the void to superconductors, vestigial organs, hypnosis, and the ...

See more details below
Paperback
$11.90
BN.com price
(Save 20%)$14.95 List Price

Pick Up In Store

Reserve and pick up in 60 minutes at your local store

Other sellers (Paperback)
  • All (13) from $4.99   
  • New (9) from $9.03   
  • Used (4) from $4.99   
Nothing: Surprising Insights Everywhere from Zero to Oblivion

Available on NOOK devices and apps  
  • NOOK Devices
  • NOOK HD/HD+ Tablet
  • NOOK
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK Study
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$10.49
BN.com price
(Save 29%)$14.95 List Price

Overview

Incredible discoveries from the fringes of the universe to the inner workings of our minds—all from nothing!


It turns out that almost nothing is as curious—or as enlightening—as, well, nothing. What is nothingness? Where can it be found? The writers of the world's top-selling science magazine investigate—from the big bang, dark energy, and the void to superconductors, vestigial organs, hypnosis, and the placebo effect—and discover that understanding nothing may be the key to understanding everything:

What came before the big bang, and will our universe end?
How might cooling matter down almost to absolute zero help solve our energy crisis?
How can someone suffer from a false diagnosis as though it were true?
Does nothingness even exist? Recent experiments suggest that squeezing a perfect vacuum somehow creates light.
Why is it unfair to accuse sloths—animals who do nothing—of being lazy? And more!

Contributors Paul Davies, Jo Marchant, and Ian Stewart, along with two former editors of Nature and 16 other leading writers and scientists, marshal up-to-the-minute research to make one of the most perplexing realms in science dazzlingly clear. Prepare to be amazed at how much more there is to nothing than you ever realized.

Read More Show Less

Editorial Reviews

Publishers Weekly
05/05/2014
There's a lot about nothing in this fun assortment of pop science essays culled from New Scientist. The essays aren't all about nothing necessarily. Sometimes they're about the appearance or feel of nothing, such as Linda Geddes's "Banishing Consciousness" which explores the effects of anaesthetics; Stephen Battersby's "Pathways to Cosmic Oblivion" describes fours ways the universe might end its days. An essay by Douglas Fox reveals a once unexplored network in the brain and the benefits of daydreaming. The collection on a whole takes a fun and accessible tone with easily digestable insights and discoveries, like the history and differences between zero as a number and zero as a symbol (which surprisingly people didn't always use it or even have it to represent nothing) or the critical benefits of doing nothing for certain animals. The topics may seem dense but the reading is breezy, proving it doesn't take a scientist to know about nothing. (Mar.)
From the Publisher

“[A] terrific collection of essays and articles exploring everything from vacuum to the birth and death of the universe to how the concept of zero gained wide acceptance in the 17th century after being shunned as a dangerous innovation for 400 years . . . Each of the essays in Nothing is nothing short of fascinating.”
Brain Pickings

"The collection on a whole takes a fun and accessible tone with easily digestable insights and discoveries . . . the reading is breezy, proving it doesn't take a scientist to know about nothing."
Publishers Weekly

Brain Pickings
“[A] terrific collection of essays and articles exploring everything from vacuum to the birth and death of the universe to how the concept of zero gained wide acceptance in the 17th century after being shunned as a dangerous innovation for 400 years . . . Each of the essays in Nothing is nothing short of fascinating.”
Brain Pickings
Read More Show Less

Product Details

  • ISBN-13: 9781615192052
  • Publisher: Experiment, The
  • Publication date: 4/15/2014
  • Pages: 272
  • Sales rank: 176,555
  • Product dimensions: 5.00 (w) x 7.75 (h) x 0.75 (d)

Meet the Author

Established in 1956, New Scientist is the fastest-growing and bestselling science magazine in the world, reaching over 3 million readers through its print and digital channels. Its series of accessible popular science books, which debuted in 2005, has sold well over 2 million copies worldwide. Jeremy Webb, who has worked at New Scientist for over twenty-three years, is editor-in-chief.


Read More Show Less

Read an Excerpt

Nothing: Surprising Insight Everywhere from Zero to Oblivion


By Jeremy Weber

The Experiment

Copyright © 2014 Jeremy Weber
All rights reserved.
ISBN: 978-1-61519-205-2


CHAPTER 1

Beginnings


"Astronomy leads us to a unique event, a universe which was created out of nothing," said Arno Penzias, the American physicist and Nobel laureate. He was talking about the mother of all beginnings, the big bang. It's the obvious place for us to start. To add some variety, we'll bounce you to ancient Babylon and then to the most modern of brain-scanning laboratories. You'll find out about the birth of a symbol that you almost certainly take for granted and discover that your head is home to an organ you've probably never heard of. Along the way, we'll look at the fruits of an infant scientific field—the mind's power to heal the body.


The big bang

Our universe began in an explosion of sorts, what's called the big bang. The $64,000 question is how the cosmos emerged out of nothing. But before we tackle that, we need to understand what the big bang entailed. Here's Marcus Chown.

In the beginning was nothing. Then the universe was born in a searing hot fireball called the big bang. But what was the big bang? Where did it happen? And how have astronomers come to believe such a ridiculous thing?

About 13.82 billion years ago, the universe that we inhabit erupted, literally, out of nothing. It exploded in a titanic fireball called the big bang. Everything—all matter, energy, even space and time—came into being at that instant.

In the earliest moments of the big bang, the stuff of the universe occupied an extraordinarily small volume and was unimaginably hot. It was a seething cauldron of electromagnetic radiation mixed with microscopic particles of matter unlike any found in today's universe. As the fireball expanded, it cooled, and more and more structure began to "freeze out."

Step by step, the fundamental particles we know today, the building blocks of all ordinary matter, acquired their present identities. The particles condensed into atoms and galaxies began to grow, then fragment into stars such as our sun. About 4.55 billion years ago, Earth formed. The rest, as they say, is history.

It is an extraordinarily grand picture of creation. Yet astronomers and physicists, armed with a growing mass of evidence to back their theories, are so confident of the scenario that they believe they can work out the detailed conditions in the early universe as it evolved, instant by instant.

That's not to say we can go back to the moment of creation. The best that physics can do is to attempt to describe what was happening when the universe was already about 10-35 seconds old—a length of time that can also be written as a decimal point followed by 34 zeroes and a I.

This is an exceedingly small interval of time, but you would be wrong if you thought it was so close to the moment of creation as to make no difference. Although the structure of the universe no longer changes much in even a million years, when the universe was young, things changed much more rapidly.

For example, physicists think that as many important events happened between the end of the first tenth of a second and the end of the first second as in the interval from the first hundredth of a second to the first tenth of a second, and so on, logarithmically, back to the very beginning. As they run the history of the universe backward, like a movie in reverse, space is filled with ever more frenzied activity.

This is because the early universe was dominated by electromagnetic radiation-in the form of little packets of energy called photons-and the higher the temperature, the more energetic the photons. Now, high-energy photons can change into particles of matter because one form of energy can be converted into another, and, as Einstein revealed, mass (m) is simply a form of energy (E), hence his famous equation E=mc2, where c is the speed of light.

What Einstein's equation says is that particles of a particular mass, m, can be created if the packets of radiation, the photons, have an energy of at least mc2. Put another way, there is a temperature above which the photons are energetic enough to produce a particle of mass, m, and below which they cannot create that particle.

If we look far enough back, we come to a time when the temperature was so high, and the photons so energetic, that colliding photons could produce particles out of radiant energy. What those particles were before the universe was 10-35 seconds old, we do not know. All we can say is that they were very much more massive than the particles we are familiar with today, such as the electron and top quark.

As time progressed and temperature fell, so the mix of particles in the universe changed to a soup of less and less massive particles. Each particle was "king for a day," or at least for a split second. For the reverse process was also going on-matter was being converted back to radiant energy as particles collided to produce photons.

What do physicists think the universe was like a mere 10-35 seconds after the big bang?

Well, the volume of space that was destined to become the "observable universe," which today is 84 billion light years across, was contained in a volume roughly the size of a pea. And the temperature of this superdense material was an unimaginable 1028 ºC.

At this temperature, physicists predict, colliding photons had just the right amount of energy to produce a particle called the X-boson that was a million billion times more massive than the proton. No one has yet observed an X-boson, because to do so we would have to recreate, in an Earth-bound laboratory, the extreme conditions that existed just 10-35 seconds after the big bang.

How far back can physicists probe in their laboratories?

The answer is to a time when the universe was about one-trillionth (10-12) of a second old. By then, it had cooled down to about 100 million billion degrees—still 10 billion times hotter than the center of the sun. In 2012, physicists at CERN, the European center for particle physics in Geneva, recreated these conditions in the giant particle accelerator called the Large Hadron Collider. They conjured into being a particle that resembles the Higgs boson, a particle that vanished from the universe a trillionth of a second after the big bang.

The gulf between 10-35 seconds and a trillionth of a second is gigantic. We know that for most of this period, matter was squeezed together more tightly than the most compressed matter we know of—that inside the nuclei of atoms. And, as the temperature fell, so the energy level of photons declined, creating particles of lower and lower masses.

At some point, the hypothetical building blocks of the neutron and proton—known as quarks—came into being. And by the time the universe was about one-hundredth of a second old, it had cooled sufficiently to be dominated by particles that are familiar to us today: photons, electrons, positrons and neutrinos. Neutrons and protons were around, but there weren't many of them. In fact, they were a very small contaminant in the universe.

About one second into the life of the universe, the temperature had fallen to about 10 billion ºC, and photons had too little energy to produce particles easily. Electrons and their positively charged "antimatter" opposites, called positrons, were colliding and annihilating each other to create photons. However, because of a slight and, to this day, mysterious lopsidedness in the laws of physics, there were roughly 10 billion + 1 electrons for every 10 billion positrons. So, after an orgy of annihilation, the universe was left with a surplus of matter, and with about 10 billion photons for every electron, a ratio that persists today.

The next important stage in the history of the universe was at about one minute.

The temperature had dropped to a mere 1 billion ºC—the temperature in the hearts of the hottest stars. Now the particles were moving more slowly. In the case of protons and neutrons, it meant that they stayed close to each other long enough for the strong nuclear forces, which bind them together in the nuclei of atoms, to have a chance to take hold. In particular, two protons and two neutrons could combine to form nuclei of helium.

Solitary neutrons decay into protons in about 15 minutes, so any neutrons left over after helium formed became protons. According to physicists' calculations, roughly ten protons were left over for every helium nucleus that formed. And these became the nuclei of hydrogen atoms, which consist of a single proton.

This is one of the strongest pieces of evidence that the big bang really did happen. For much, much later, when the temperature had cooled considerably, the hydrogen and helium nuclei picked up electrons to become stable atoms. Today, when astronomers measure the abundance of elements in the universe—in stars, galaxies and interstellar space—they still find roughly one helium atom for every ten hydrogens.

The point at which it was cool enough for electrons to combine with protons to make the first atoms was about 380,000 years after the big bang. The universe was now cooling very much more slowly than in its early moments, and the temperature had reached a modest 3,000 ºC. This also marked another significant event in the early history of the universe.

Until the electrons had combined with the hydrogen and helium nuclei, photons could not travel far in a straight line without running into an electron. Free electrons are very good at scattering, or redirecting, photons. As a consequence, every photon had to zigzag its way across the universe. This had the effect of making the universe opaque. If this happened today and light from the stars zigzagged its way across space to your eyes, rather than flying in straight lines, you would see only a dim milky glow from the whole sky rather than myriad stars.

We can still detect photons from this period. They have been flying freely through the universe for billions of years, and astronomers observe them as what's called the cosmic microwave background. Whereas these photons started their journey when the temperature was 3,000 ºC, the universe has expanded about 1100 times while they have been in flight. This has decreased their energy by this factor, so that we now record the signals as just 2.725 degrees above absolute zero.

The temperature dropping to about 3,000 ºC also signalled another event—the point at which the energy levels of the radiation, or photons, in the universe fell below that of the matter. From then on, the universe was dominated by matter and by the force of gravity acting on that matter.

The building of elements, which had begun when the universe was about one minute old, had stopped by the time it had been in existence for ten minutes, and the protons and neutrons had formed the nuclei of hydrogen and helium. For elements such as carbon and oxygen to form, hotter and denser conditions were needed, but the universe was getting colder and more rarefied all the while. The heavy elements in the planets and in your body were created, billions of years later, in the nuclear furnaces of stars.

Instead, as the universe continued to expand, gravity caused clumps of matter to accumulate in large islands. Those islands were to become the galaxies. The galaxies continued their headlong rush into the void, fragmenting into smaller clumps which became individual stars, producing heat and light by nuclear reactions deep in their cores. At one point, about 9 billion years after the big bang, a yellow star was born toward the outer edge of a great spiral whirlpool of stars called the Milky Way. The star was our sun.


Looking backward in time

Physicists can run the expansion of the universe backward. In this way, they can watch it get hotter as it gets smaller, just as the air in a bicycle pump heats up as it is compressed. But theory proposes that, at the big bang itself, the temperature was infinite. And infinities warn physicists that theories are flawed.

At the moment, the theories which take us furthest back in time are the Grand Unified Theories. These GUTs are an attempt to show that three of the basic forces that govern the behavior of all matter–the strong and weak nuclear forces and the electromagnetic force–are no more than facets of a single "superforce."

Each force of nature arises from the exchange of a different "messenger" particle, or boson. The messenger transmits a force between two particles, just as a tennis ball transmits to a player the force of an opponent's shot. At high enough temperatures–such as those when the universe was 10-35 seconds old–physicists believe the electromagnetic and strong and weak nuclear forces were identical, and mediated by a messenger dubbed the X-boson.

Physicists want to show that gravity, too, is a facet of the superforce. They suspect that gravity split apart from the other three forces at about 10-43 seconds after the big bang. But before they can "unify" the four forces, they must describe gravity using quantum theory, which is hugely successful for describing the other forces. To say that physicists are finding this difficult is an understatement.

When they have their unified theory, physicists believe that they will be able to probe right back to the moment of creation and explain how the universe popped suddenly into existence from nothing 13.82 billion years ago.


How do we know there was a big bang?

Our modern picture of the universe is due in large part to an American astronomer, Edwin Hubble. In 1923, he showed that the Milky Way, the great island of stars to which our sun belongs, was just one galaxy among thousands of millions of others scattered throughout space.

Hubble also found that the wavelength of the light from most of the galaxies is "red shifted." Astronomers initially interpreted this as a Doppler effect, familiar to anyone who has noticed how the pitch of a police siren drops as it passes by. The siren becomes deeper because the wavelength of the sound is stretched out. Similarly with light, the wavelength of light from a galaxy which is moving away from us is stretched out to a longer, or redder, wavelength.

Hubble discovered that most galaxies are receding from the Milky Way. In other words, the universe is expanding. And the farther away a galaxy is, the faster it is receding.

One conclusion is inescapable: the universe must have been smaller in the past. There must have been a moment when the universe started expanding: the moment of its birth. By imagining the expansion running backward, astronomers deduce that the universe came into existence about 13.82 billion years ago.

This idea of a big bang means that the red shifts of galaxies are not really Doppler shifts. They arise because in the time that light from distant galaxies has been traveling across space to Earth, the universe has grown, stretching the wavelength of light.

The picture of a universe that is expanding need not have been a surprise to anyone. If Albert Einstein had only had faith in his equations, he could have predicted it in 1915 with his theory of gravity, known as the general theory of relativity. But Einstein, like Newton before him, hung on to the idea that the universe was static-unchanging, without beginning or end. He can be forgiven because, at the time, he did not even know about the existence of galaxies.

The vision of a static universe also appealed strongly to astronomers. In 1948, Hermann Bondi, Thomas Gold and Fred Hoyle proposed the steady-state theory of the universe. The universe was expanding, they said, but perhaps it was unchanging in time.

Their theory said that space is expanding at a constant rate but, at the same time, matter is created continuously throughout the universe. This matter is just enough to compensate for the expansion and keep the density of the universe constant. Where this matter would come from, nobody could say. But neither could the proponents of the big bang.

The steady-state theory held its own as the principal challenger to the big bang theory for two decades. Then, in the 1960s, two astronomical discoveries dealt it a fatal blow.


(Continues...)

Excerpted from Nothing: Surprising Insight Everywhere from Zero to Oblivion by Jeremy Weber. Copyright © 2014 Jeremy Weber. Excerpted by permission of The Experiment.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)