Numerical Optimization
Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems.

For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.

There is a selected solutions manual for instructors for the new edition.

1128876300
Numerical Optimization
Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems.

For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.

There is a selected solutions manual for instructors for the new edition.

79.99 In Stock
Numerical Optimization

Numerical Optimization

Numerical Optimization

Numerical Optimization

Hardcover(Second Edition 2006)

$79.99 
  • SHIP THIS ITEM
    In stock. Ships in 2-4 days.
    Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Numerical Optimization presents a comprehensive and up-to-date description of the most effective methods in continuous optimization. It responds to the growing interest in optimization in engineering, science, and business by focusing on the methods that are best suited to practical problems.

For this new edition the book has been thoroughly updated throughout. There are new chapters on nonlinear interior methods and derivative-free methods for optimization, both of which are used widely in practice and the focus of much current research. Because of the emphasis on practical methods, as well as the extensive illustrations and exercises, the book is accessible to a wide audience. It can be used as a graduate text in engineering, operations research, mathematics, computer science, and business. It also serves as a handbook for researchers and practitioners in the field. The authors have strived to produce a text that is pleasant to read, informative, and rigorous - one that reveals both the beautiful nature of the discipline and its practical side.

There is a selected solutions manual for instructors for the new edition.


Product Details

ISBN-13: 9780387303031
Publisher: Springer New York
Publication date: 07/27/2006
Series: Springer Series in Operations Research and Financial Engineering
Edition description: Second Edition 2006
Pages: 664
Product dimensions: 7.01(w) x 9.25(h) x 0.06(d)

Table of Contents

Fundamentals of Unconstrained Optimization.- Line Search Methods.- Trust-Region Methods.- Conjugate Gradient Methods.- Quasi-Newton Methods.- Large-Scale Unconstrained Optimization.- Calculating Derivatives.- Derivative-Free Optimization.- Least-Squares Problems.- Nonlinear Equations.- Theory of Constrained Optimization.- Linear Programming: The Simplex Method.- Linear Programming: Interior-Point Methods.- Fundamentals of Algorithms for Nonlinear Constrained Optimization.- Quadratic Programming.- Penalty and Augmented Lagrangian Methods.- Sequential Quadratic Programming.- Interior-Point Methods for Nonlinear Programming.
From the B&N Reads Blog

Customer Reviews