The NURBS Book / Edition 2

The NURBS Book / Edition 2

by Les Piegl, Wayne Tiller
     
 

View All Available Formats & Editions

ISBN-10: 3540615458

ISBN-13: 9783540615453

Pub. Date: 03/15/2010

Publisher: Springer Berlin Heidelberg

The second, revised edition of this book covers all aspects of non-uniform rational B-splines necessary to design geometry in a computer-aided environment. Basic B-spline features, curve and surface algorithms, and state-of-the-art geometry tools are all discussed. Detailed code for design algorithms and computational tricks are covered, too, in a lucid,

Overview

The second, revised edition of this book covers all aspects of non-uniform rational B-splines necessary to design geometry in a computer-aided environment. Basic B-spline features, curve and surface algorithms, and state-of-the-art geometry tools are all discussed. Detailed code for design algorithms and computational tricks are covered, too, in a lucid, easy-to-understand style, with a minimum of mathematics and using numerous worked examples. The book is a must for students, researchers, and implementors whose work involves the use of splines.

Product Details

ISBN-13:
9783540615453
Publisher:
Springer Berlin Heidelberg
Publication date:
03/15/2010
Series:
Monographs in Visual Communication Series
Edition description:
2nd ed. 1997
Pages:
646
Sales rank:
915,119
Product dimensions:
1.40(w) x 9.21(h) x 6.14(d)

Table of Contents

One Curve and Surface Basics.- 1.1 Implicit and Parametric Forms.- 1.2 Power Basis Form of a Curve.- 1.3 Bézier Curves.- 1.4 Rational Bézier Curves.- 1.5 Tensor Product Surfaces.- Exercises.- Two B-Spline Basis Functions.- 2.1 Introduction.- 2.2 Definition and Properties of B-spline Basis Functions.- 2.3 Derivatives of B-spline Basis Functions.- 2.4 Further Properties of the Basis Functions.- 2.5 Computational Algorithms.- Exercises.- Three B-spline Curves and Surfaces.- 3.1 Introduction.- 3.2 The Definition and Properties of B-spline Curves.- 3.3 The Derivatives of a B-spline Curve.- 3.4 Definition and Properties of B-spline Surfaces.- 3.5 Derivatives of a B-spline Surface.- Exercises.- Four Rational B-spline Curves and Surfaces.- 4.1 Introduction.- 4.2 Definition and Properties of NURBS Curves.- 4.3 Derivatives of a NURBS Curve.- 4.4 Definition and Properties of NURBS Surfaces.- 4.5 Derivatives of a NURBS Surface.- Exercises.- Five Fundamental Geometric Algorithms.- 5.1 Introduction.- 5.2 Knot Insertion.- 5.3 Knot Refinement.- 5.4 Knot Removal.- 5.5 Degree Elevation.- 5.6 Degree Reduction.- Exercises.- Six Advanced Geometric Algorithms.- 6.1 Point Inversion and Projection for Curves and Surfaces.- 6.2 Surface Tangent Vector Inversion.- 6.3 Transformations and Projections of Curves and Surfaces.- 6.4 Reparameterization of NURBS Curves and Surfaces.- 6.5 Curve and Surface Reversal.- 6.6 Conversion Between B-spline and Piecewise Power Basis Forms.- Exercises.- Seven Conics and Circles.- 7.1 Introduction.- 7.2 Various Forms for Representing Conics.- 7.3 The Quadratic Rational Bézier Arc.- 7.4 Infinite Control Points.- 7.5 Construction of Circles.- 7.6 Construction of Conies.- 7.7 Conic Type Classification and Form Conversion.- 7.8 Higher Order Circles.- Exercises.- Eight Construction of Common Surfaces.- 8.1 Introduction.- 8.2 Bilinear Surfaces.- 8.3 The General Cylinder.- 8.4 The Ruled Surface.- 8.5 The Surface of Revolution.- 8.6 Nonuniform Scaling of Surfaces.- 8.7 A Three-sided Spherical Surface.- Nine Curve and Surface Fitting.- 9.1 Introduction.- 9.2 Global Interpolation.- 9.2.1 Global Curve Interpolation to Point Data.- 9.2.2 Global Curve Interpolation with End Derivatives Specified.- 9.2.3 Cubic Spline Curve Interpolation.- 9.2.4 Global Curve Interpolation with First Derivatives Specified.- 9.2.5 Global Surface Interpolation.- 9.3 Local Interpolation.- 9.3.1 Local Curve Interpolation Preliminaries.- 9.3.2 Local Parabolic Curve Interpolation.- 9.3.3 Local Rational Quadratic Curve Interpolation.- 9.3.4 Local Cubic Curve Interpolation.- 9.3.5 Local Bicubic Surface Interpolation.- 9.4 Global Approximation.- 9.4.1 Least Squares Curve Approximation.- 9.4.2 Weighted and Constrained Least Squares Curve Fitting.- 9.4.3 Least Squares Surface Approximation.- 9.4.4 Approximation to Within a Specified Accuracy.- 9.5 Local Approximation.- 9.5.1 Local Rational Quadratic Curve Approximation.- 9.5.2 Local Nonrational Cubic Curve Approximation.- Exercises.- Ten Advanced Surface Construction Techniques.- 10.1 Introduction.- 10.2 Swung Surfaces.- 10.3 Skinned Surfaces.- 10.4 Swept Surfaces.- 10.5 Interpolation of a Bidirectional Curve Network.- 10.6 Coons Surfaces.- Eleven Shape Modification Tools.- 11.1 Introduction.- 11.2 Control Point Repositioning.- 11.3 Weight Modification.- 11.3.1 Modification of One Curve Weight.- 11.3.2 Modification of Two Neighboring Curve Weights.- 11.3.3 Modification of One Surface Weight.- 11.4 Shape Operators.- 11.4.1 Warping.- 11.4.2 Flattening.- 11.4.3 Bending.- 11.5 Constraint-based Curve and Surface Shaping.- 11.5.1 Constraint-based Curve Modification.- 11.5.2 Constraint-based Surface Modification.- Twelve Standards and Data Exchange.- 12.1 Introduction.- 12.2 Knot Vectors.- 12.3 Nurbs Within the Standards.- 12.3.1 IGES.- 12.3.2 STEP.- 12.3.3 PHIGS.- 12.4 Data Exchange to and from a NURBS System.- Thirteen B-spline Programming Concepts.- 13.1 Introduction.- 13.2 Data Types and Portability.- 13.3 Data Structures.- 13.4 Memory Allocation.- 13.5 Error Control.- 13.6 Utility Routines.- 13.7 Arithmetic Routines.- 13.8 Example Programs.- 13.9 Additional Structures.- 13.10 System Structure.- References.

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >