On the extraction of computational content from noneffective convergence proofs in analysis

The Fields medalist, Terence Tao, recently emphasized the importance of "hard" (or finitary) analysis and connected the finitisation to the methods we will employ in this thesis: ... The main advantage of working in a finitary setting ... is that the underlying dynamical system becomes extremely explicit. ... In proof theory, this finitisation is known as Godel functional interpretation ... For convergence theorems Tao calls the finitary formulation metastability and the corresponding explicit content its rate(s). In the case of the mean ergodic theorem such a rate can be used to obtain even an effective bound on the number of fluctuations. We introduce effective learnability and three other natural kinds of such finitary information and analyze the corresponding proof-theoretic conditions. Effective learnability not only provides means to know when to expect a bound on the number of fluctuations but also explains a very common pattern in the realizers for strong ergodic theorems. Moreover, we will see how a most natural example for a non-learnable convergence theorem closely relates to a notable exception to this pattern, the strong nonlinear ergodic theorem due to Wittmann. Finally, we show how can computational content be extracted in the context of non-standard analysis.

1136530869
On the extraction of computational content from noneffective convergence proofs in analysis

The Fields medalist, Terence Tao, recently emphasized the importance of "hard" (or finitary) analysis and connected the finitisation to the methods we will employ in this thesis: ... The main advantage of working in a finitary setting ... is that the underlying dynamical system becomes extremely explicit. ... In proof theory, this finitisation is known as Godel functional interpretation ... For convergence theorems Tao calls the finitary formulation metastability and the corresponding explicit content its rate(s). In the case of the mean ergodic theorem such a rate can be used to obtain even an effective bound on the number of fluctuations. We introduce effective learnability and three other natural kinds of such finitary information and analyze the corresponding proof-theoretic conditions. Effective learnability not only provides means to know when to expect a bound on the number of fluctuations but also explains a very common pattern in the realizers for strong ergodic theorems. Moreover, we will see how a most natural example for a non-learnable convergence theorem closely relates to a notable exception to this pattern, the strong nonlinear ergodic theorem due to Wittmann. Finally, we show how can computational content be extracted in the context of non-standard analysis.

53.0 Out Of Stock
On the extraction of computational content from noneffective convergence proofs in analysis

On the extraction of computational content from noneffective convergence proofs in analysis

by Pavol Safarik
On the extraction of computational content from noneffective convergence proofs in analysis

On the extraction of computational content from noneffective convergence proofs in analysis

by Pavol Safarik

Paperback

$53.00 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The Fields medalist, Terence Tao, recently emphasized the importance of "hard" (or finitary) analysis and connected the finitisation to the methods we will employ in this thesis: ... The main advantage of working in a finitary setting ... is that the underlying dynamical system becomes extremely explicit. ... In proof theory, this finitisation is known as Godel functional interpretation ... For convergence theorems Tao calls the finitary formulation metastability and the corresponding explicit content its rate(s). In the case of the mean ergodic theorem such a rate can be used to obtain even an effective bound on the number of fluctuations. We introduce effective learnability and three other natural kinds of such finitary information and analyze the corresponding proof-theoretic conditions. Effective learnability not only provides means to know when to expect a bound on the number of fluctuations but also explains a very common pattern in the realizers for strong ergodic theorems. Moreover, we will see how a most natural example for a non-learnable convergence theorem closely relates to a notable exception to this pattern, the strong nonlinear ergodic theorem due to Wittmann. Finally, we show how can computational content be extracted in the context of non-standard analysis.


Product Details

ISBN-13: 9783832537654
Publisher: Logos Verlag Berlin
Publication date: 08/28/2014
Pages: 160
Product dimensions: 5.71(w) x 8.27(h) x (d)

About the Author

P. Safarik, born and studied at grammar school Grosslingova in Bratislava, Diplom (ger.) and Ph D in mathematics at TU Darmstadt.

From the B&N Reads Blog

Customer Reviews