On The Origin Of Species

Overview

On the Origin of Species, published in 1859, is widely accepted as the seminal work in modern biology. Through careful observation, Charles Darwin explains how traits can be selected for within a population. This is easily observed in the artificial selection of farm animals, for instance. Darwin's theory caused an uproar that can still be heard today by refuting the Christian doctrine of created breeds, in which all species that exist now have always existed just as they are.

...

See more details below
Other sellers (Paperback)
  • All (4) from $9.16   
  • New (1) from $15.39   
  • Used (3) from $9.16   
The Origin Of Species: 150th Anniversary Edition

Available on NOOK devices and apps  
  • NOOK Devices
  • NOOK HD/HD+ Tablet
  • NOOK
  • NOOK Color
  • NOOK Tablet
  • Tablet/Phone
  • NOOK for Windows 8 Tablet
  • NOOK for iOS
  • NOOK for Android
  • NOOK Kids for iPad
  • PC/Mac
  • NOOK for Windows 8
  • NOOK for PC
  • NOOK for Mac
  • NOOK Study
  • NOOK for Web

Want a NOOK? Explore Now

NOOK Book (eBook)
$1.99
BN.com price
Marketplace
BN.com

All Available Formats & Editions

Overview

On the Origin of Species, published in 1859, is widely accepted as the seminal work in modern biology. Through careful observation, Charles Darwin explains how traits can be selected for within a population. This is easily observed in the artificial selection of farm animals, for instance. Darwin's theory caused an uproar that can still be heard today by refuting the Christian doctrine of created breeds, in which all species that exist now have always existed just as they are.

It is the very publication of this work that gave Charles Darwin his place of prominence in the history of the theory of evolution, because while he was not the first to suggest such a mechanism, his book and its exhaustive studies made the information widely available.

English scientist, naturalist, and geologist CHARLES DARWIN (1809-1882) revolutionized science, especially biology, with his theory of evolution through natural selection. As a passenger aboard the Beagle, Darwin became intrigued by the existence of different species in different geographical locations, which aided in the development of his theory. In addition to The Origin of Species, he is also remembered for The Descent of Man, and Selection in Relation to Sex and The Expression of the Emotions in Man and Animals.

The famous classic on evolution that revolutionized the course of science. Darwin's theory that species derive from other species by a gradual evolutionary process and that the average age level of each species is heightened by the "survival of the fittest" stirred popular debate of his time to a fever pitch. "Next to the Bible, no work has been quite as influential."--Ashley Montagu.

Read More Show Less

Editorial Reviews

Publishers Weekly

Originally published in 1859, Darwin's revolutionary idea is revisited in this spirited and profoundly enthralling reading by Professor Richard Dawkins, who in reading Darwin's material aloud manages to rediscover old ideas and unearth some dramatic subtleties in his prose. Dawkins offers a well-pronounced, pitch-perfect delivery and smartly never attempts to turn the reading into a performance from Darwin's point of view. Instead, Dawkins delivers the material from his own context as a modern-day interpreter of the classical work. Dawkins also splendidly adapts this abridgment, leaving out sections of Darwin's original theories that have been discredited by modern science. Dawkins says he believes his alterations are what Darwin himself would have wished for the recording, and the final result is an absolutely astounding glimpse into life as we know it. (Aug.)

Copyright © Reed Business Information, a division of Reed Elsevier Inc. All rights reserved.
Library Journal

As a milestone not only in the history of science but also in cultural history, On the Origin of Species belongs in every library, high school and above. Nature writer Quammen (The Reluctant Mr. Darwin) offers a gloriously illustrated and richly annotated volume, which testifies to the book's enduring legacy. Throughout the text, relevant sidebars from other of Darwin's writings, including his Autobiography, field notes from the HMS Beagle, and his myriad letters, are presented for their insight. Illustrations include historical images, such as sketches, woodcuts, and portraits of people and places, but also included are contemporary photographs of the flora and fauna that Darwin described. Between the contextual additions and the edifying illustrations, there is no comparable volume. For all libraries.


—Gregg Sapp
Read More Show Less

Product Details

  • ISBN-13: 9781602061446
  • Publisher: Cosimo
  • Publication date: 3/1/2007
  • Pages: 328
  • Product dimensions: 5.50 (w) x 8.50 (h) x 0.73 (d)

Meet the Author

Charles Darwin


Dame Gillian Beer is Fellow of the British Academy and of the Royal Society of Literature. Her Darwin's Plots (1983; second edition 2000) was followed by Open Fields: Science in Cultural Encounter (1996). More recently she has been working on Carroll's Alice books in the context of nineteenth-century intellectual controversies and a new collection of her essays on literature and science is scheduled for 2008.

Biography

Robert Charles Darwin was born in Shrewsbury, England, on February 12, 1809, into a wealthy and highly respected family. His grandfather, Erasmus Darwin, was a doctor and the author of many works, including his well-known Zoonomia, or the Laws of Organic Life, which suggested a theory of evolution. Charles's father, Robert Waring Darwin, was also a prosperous doctor; his mother, Susannah, was the daughter of Josiah Wedgwood, founder of the renowned Wedgwood potteries. The Darwins and the Wedgwoods had close and long-standing relations, and Charles was to marry his cousin, Emma Wedgwood.

In 1825 at age sixteen, Darwin matriculated at Edinburgh University to study medicine. There, his early interest in natural history developed, and he studied particularly crustaceans, sea creatures, and beetles. Nauseated by the sight of blood, however, he decided that medicine was not his vocation, left Edinburgh in 1827 and entered Christ's College, Cambridge University, with no clear sense of possible vocation, theology itself being an option. At Cambridge he became friends with J. S. Henslow, a clergyman who was also professor of botany. Although Darwin was to graduate from Cambridge with a B.A. in theology, he spent much time with Henslow, developing his interest in natural science. It was Henslow who secured a position for Darwin on an exploratory expedition aboard the HMS Beagle.

In December 1831, the year he graduated from Cambridge, Darwin embarked upon a five-year voyage to Africa and South America, acting as a companion to the captain, Robert Fitzroy. Darwin spent more time in land expeditions than at sea, where he was always seasick, but during the long voyages he continued his collecting and, cramped in his tiny cabin, meticulously wrote up his ideas. Several years after his return, at the time of the birth of his first son, William, Darwin fell ill. It is conjectured that while in South America he had contracted Chagas's disease, but whatever the cause, the effects were debilitating for the rest of Darwin's life.

By the time he returned to London in 1835, many of his letters, some to scientists like Charles Lyell and Adam Sedgwick, had been read before scientific societies, and he was already a well known and respected naturalist. His first published book, an account of his voyage aboard the Beagle, entitled Journal of Researches, appeared in 1839 and was widely popular. He married the same year; soon after, the family moved from London to a secluded house at Down, in Kent, where Darwin wrote initial sketches of his theory and then preparing himself for the full exposition, spent eight years writing a detailed set of definitive monographs on barnacles.

In 1858, when Darwin was halfway through writing his book, "Natural Selection," A. R. Wallace sent him a paper called, "On the Tendency of Varieties to Depart Indefinitely from the Original Type." In language similar to Darwin's own, Wallace laid out the argument for natural selection. Wallace asked Darwin to help get the paper published -- obviously an alarming development for a man who had given twenty years of his life to getting the argument for natural selection right. Darwin's scientific friends advised him to gather materials giving evidence of his priority but to have the Wallace paper read before the Linnaean Society, along with a brief account of his own ideas. Immediately after the reading, Darwin began work on his "abstract" of "Natural Selection." The result was On the Origin of Species by Means of Natural Selection, published in 1859. Despite the controversy it generated, it was an immense success and went through five more editions in Darwin's lifetime.

Darwin devoted the rest of his life to researching and writing scientific treatises, drawing on his notebooks and corresponding with scientists all over the world, and thus developing and modifying parts of his larger argument.

Darwin never traveled again and much of his scientific work was done in his own garden and study at home. Others, particularly his "bulldog," T. H. Huxley, fought the battle for evolution publicly, and as Darwin remained quietly ailing at home, his family grew -- he had ten children -- and so did his reputation. Although he was always ill with symptoms that made it impossible for him to work full days, he produced an enormous volume of work. His death, on April 19, 1882, was a national event. Despite the piety of his wife, Emma, Darwin had fallen away from religion as he reflected both on the way nature worked and on the way his favorite daughter, Annie, died painfully from an unknown feverish illness, when she was ten. Nevertheless, ironically, he was buried in Westminster Abbey.

Author biography from the Barnes & Noble Classics edition of The Origin of Species.

Good To Know

Darwin was born on the same day as U.S. president Abraham Lincoln.

He broke his longtime snuff habit by keeping his snuff box in the basement and the key to it in the attic.

Read More Show Less
    1. Date of Birth:
      February 12, 1809
    2. Place of Birth:
      Shrewsbury, England
    1. Date of Death:
      April 19, 1882
    2. Place of Death:
      London, England
    1. Education:
      B.A. in Theology, Christ’s College, Cambridge University, 1831

Read an Excerpt

Chapter One


Variation Under Domestication


Causes of Variability—Effects of Habit—Correlation of Growth—Inheritance—Character of Domestic Varieties—Difficulty of distinguishing between Varieties and Species—Origin of Domestic Varieties from one or more Species—Domestic Pigeons, their Differences and Origin—Principle of Selection anciently followed, its Effects—Methodical and Unconscious Selection—Unknown Origin of our Domestic Productions—Circumstances favourable to Man's power of Selection


WHEN WE look to the individuals of the same variety or sub-variety of our older cultivated plants and animals, one of the first points which strikes us, is, that they generally differ much more from each other, than do the individuals of any one species or variety in a state of nature. When we reflect on the vast diversity of the plants and animals which have been cultivated, and which have varied during all ages under the most different climates and treatment, I think we are driven to conclude that this greater variability is simply due to our domestic productions having been raised under conditions of life not so uniform as, and somewhat different from, those to which the parent species have been exposed under nature. There is, also, I think, some probability in the view propounded by Andrew Knight, that this variability may be partly connected with excess of food. It seems pretty clear that organic beings must be exposed during several generations to the new conditions of life to cause any appreciable amount of variation; and that when the organisation has once begun to vary, itgenerally continues to vary for many generations. No case is on record of a variable being ceasing to be variable under cultivation. Our oldest cultivated plants, such as wheat, still often yield new varieties: our oldest domesticated animals are still capable of rapid improvement or modification.
It has been disputed at what period of life the causes of variability, whatever they may be, generally act; whether during the early or late period of development of the embryo, or at the instant of conception. Geoffroy St Hilaire's experiments show that unnatural treatment of the embryo causes monstrosities; and monstrosities cannot be separated by any clear line of distinction from mere variations. But I am strongly inclined to suspect that the most frequent cause of variability may be attributed to the male and female reproductive elements having been affected prior to the act of conception. Several reasons make me believe in this; but the chief one is the remarkable effect which confinement or cultivation has on the functions of the reproductive system; this system appearing to be far more susceptible than any other part of the organization, to the action of any change in the conditions of life. Nothing is more easy than to tame an animal, and few things more difficult than to get it to breed freely under confinement, even in the many cases when the male and female unite. How many animals there are which will not breed, though living long under not very close confinement in their native country! This is generally attributed to vitiated instincts; but how many cultivated plants display the utmost vigour, and yet rarely or never seed! In some few such cases it has been found out that very trifling changes, such as a little more or less water at some particular period of growth, will determine whether or not the plant sets a seed. I cannot here enter on the copious details which I have collected on this curious subject; but to show how singular the laws are which determine the reproduction of animals under confinement, I may just mention that carnivorous animals, even from the tropics, breed in this country pretty freely under confinement, with the exception of the plantigrades or bear family; whereas, carnivorous birds, with the rarest exceptions, hardly ever lay fertile eggs. Many exotic plants have pollen utterly worthless, in the same exact condition as in the most sterile hybrids. When, on the one hand, we see domesticated animals and plants, though often weak and sickly, yet breeding quite freely under confinement; and when, on the other hand, we see individuals, though taken young from a state of nature, perfectly tamed, long-lived, and healthy (of which I could give numerous instances), yet having their reproductive system so seriously affected by unperceived causes as to fail in acting, we need not be surprised at this system, when it does act under confinement, acting not quite regularly, and producing offspring not perfectly like their parents or variable.

Sterility has been said to be the bane of horticulture; but on this view we owe variability to the same cause which produces sterility; and variability is the source of all the choicest productions of the garden. I may add, that as some organisms will breed most freely under the most unnatural conditions (for instance, the rabbit and ferret kept in hutches), showing that their reproductive system has not been thus affected; so will some animals and plants withstand domestication or cultivation, and vary very slightly—perhaps hardly more than in a state of nature.

A long list could easily be given of 'sporting plants;' by this term gardeners mean a single bud or offset, which suddenly assumes a new and sometimes very different character from that of the rest of the plant. Such buds can be propagated by grafting, &c., and sometimes by seed. These 'sports' are extremely rare under nature, but far from rare under cultivation; and in this case we see that the treatment of the parent has affected a bud or offset, and not the ovules or pollen. But it is the opinion of most physiologists that there is no essential difference between a bud and an ovule in their earliest stages of formation; so that, in fact, 'sports' support my view, that variability may be largely attributed to the ovules or pollen, or to both, having been affected by the treatment of the parent prior to the act of conception. These cases anyhow show that variation is not necessarily connected, as some authors have supposed, with the act of generation.

Seedlings from the same fruit, and the young of the same litter, sometimes differ considerably from each other, though both the young and the parents, as Mxller has remarked, have apparently been exposed to exactly the same conditions of life; and this shows how unimportant the direct effects of the conditions of life are in comparison with the laws of reproduction, and of growth, and of inheritance; for had the action of the conditions been direct, if any of the young had varied, all would probably have varied in the same manner. To judge how much, in the case of any variation, we should attribute to the direct action of heat, moisture, light, food, &c., is most difficult: my impression is, that with animals such agencies have produced very little direct effect, though apparently more in the case of plants. Under this point of view, Mr Buckman's recent experiments on plants seem extremely valuable. When all or nearly all the individuals exposed to certain conditions are affected in the same way, the change at first appears to be directly due to such conditions; but in some cases it can be shown that quite opposite conditions produce similar changes of structure. Nevertheless some slight amount of change may, I think, be attributed to the direct action of the conditions of life—as, in some cases, increased size from amount of food, colour from particular kinds of food and from light, and perhaps the thickness of fur from climate.

Habit also has a deciding influence, as in the period of flowering with plants when transported from one climate to another. In animals it has a more marked effect; for instance, I find in the domestic duck that the bones of the wing weigh less and the bones of the leg more, in proportion to the whole skeleton, than do the same bones in the wild-duck; and I presume that this change may be safely attributed to the domestic duck flying much less, and walking more, than its wild parent. The great and inherited development of the udders in cows and goats in countries where they are habitually milked, in comparison with the state of these organs in other countries, is another instance of the effect of use. Not a single domestic animal can be named which has not in some country drooping ears; and the view suggested by some authors, that the drooping is due to the disuse of the muscles of the ear, from the animals not being much alarmed by danger, seems probable.

There are many laws regulating variation, some few of which can be dimly seen, and will be hereafter briefly mentioned. I will here only allude to what may be called correlation of growth. Any change in the embryo or larva will almost certainly entail changes in the mature animal. In monstrosities, the correlations between quite distinct parts are very curious; and many instances are given in Isidore Geoffroy St Hilaire's great work on this subject. Breeders believe that long limbs are almost always accompanied by an elongated head. Some instances of correlation are quite whimsical; thus cats with blue eyes are invariably deaf; colour and constitutional peculiarities go together, of which many remarkable cases could be given amongst animals and plants. From the facts collected by Heusinger, it appears that white sheep and pigs are differently affected from coloured individuals by certain vegetable poisons. Hairless dogs have imperfect teeth; long-haired and coarse-haired animals are apt to have, as is asserted, long or many horns; pigeons with feathered feet have skin between their outer toes; pigeons with short beaks have small feet, and those with long beaks large feet. Hence, if man goes on selecting, and thus augmenting, any peculiarity, he will almost certainly unconsciously modify other parts of the structure, owing to the mysterious laws of the correlation of growth.

The result of the various, quite unknown, or dimly seen laws of variation is infinitely complex and diversified. It is well worth while carefully to study the several treatises published on some of our old cultivated plants, as on the hyacinth, potato, even the dahlia, &c.; and it is really surprising to note the endless points in structure and constitution in which the varieties and subvarieties differ slightly from each other. The whole organization seems to have become plastic, and tends to depart in some small degree from that of the parental type.

Any variation which is not inherited is unimportant for us. But the number and diversity of inheritable deviations of structure, both those of slight and those of considerable physiological importance, is endless. Dr Prosper Lucas's treatise, in two large volumes, is the fullest and the best on this subject. No breeder doubts how strong is the tendency to inheritance: like produces like is his fundamental belief: doubts have been thrown on this principle by theoretical writers alone. When a deviation appears not unfrequently, and we see it in the father and child, we cannot tell whether it may not be due to the same original cause acting on both; but when amongst individuals, apparently exposed to the same conditions, any very rare deviation, due to some extraordinary combination of circumstances, appears in the parent—say, once amongst several million individuals—and it reappears in the child, the mere doctrine of chances almost compels us to attribute its reappearance to inheritance. Every one must have heard of cases of albinism, prickly skin, hairy bodies, &c., appearing in several members of the same family. If strange and rare deviations of structure are truly inherited, less strange and commoner deviations may be freely admitted to be inheritable. Perhaps the correct way of viewing the whole subject, would be, to look at the inheritance of every character what ever as the rule, and non-inheritance as the anomaly.

The laws governing inheritance are quite unknown; no one can say why the same peculiarity in different individuals of the same species, and in individuals of different species, is sometimes inherited and sometimes not so; why the child often reverts in certain characters to its grandfather or grandmother or other much more remote ancestor; why a peculiarity is often transmitted from one sex to both sexes, or to one sex alone, more commonly but not exclusively to the like sex. It is a fact of some little importance to us, that peculiarities appearing in the males of our domestic breed are often transmitted either exclusively, or in a much greater degree, to males alone. A much more important rule, which I think may be trusted, is that, whatever period of life a peculiarity first appears in, it tends to appear in the offspring at a corresponding age, though sometimes earlier. In many cases this could not be otherwise; thus the inherited peculiarities in the horns of cattle could appear only in the offspring when nearly mature; peculiarities in the silkworm are known to appear at the corresponding caterpillar or cocoon stage. But hereditary diseases and some other facts make me believe that the rule has a wider extension, and that when there is no apparent reason why a peculiarity should appear at any particular age, yet that it does tend to appear in the offspring at the same period at which it first appeared in the parent. I believe this rule to be of the highest importance in explaining the laws of embryology. These remarks are of course confined to the first appearance of the peculiarity, and not to its primary cause, which may have acted on the ovules or male element; in nearly the same manner as in the crossed offspring from a short-horned cow by a long-horned bull, the greater length of horn, though appearing late in life, is clearly due to the male element.

Having alluded to the subject of reversion, I may here refer to a statement often made by naturalists—namely, that our domestic varieties, when run wild, gradually but certainly revert in character to their aboriginal stocks. Hence it has been argued that no deductions can be drawn from domestic races to species in a state of nature. I have in vain endeavoured to discover on what decisive facts the above statement has so often and so boldly been made. There would be great difficulty in proving its truth: we may safely conclude that very many of the most strongly-marked domestic varieties could not possibly live in a wild state. In many cases we do not know what the aboriginal stock was, and so could not tell whether or not nearly perfect reversion had ensued. It would be quite necessary, in order to prevent the effects of intercrossing, that only a single variety should be turned loose in its new home. Nevertheless, as our varieties certainly do occasionally revert in some of their characters to ancestral forms, it seems to me not improbable, that if we could succeed in naturalising, or were to cultivate, during many generations, the several races, for instance, of the cabbage, in very poor soil (in which case, however, some effect would have to be attributed to the direct action of the poor soil), that they would to a large extent, or even wholly, revert to the wild aboriginal stock. Whether or not the experiment would succeed, is not of great importance for our line of argument; for by the experiment itself the conditions of life are changed. If it could be shown that our domestic varieties manifested a strong tendency to reversion,—that is, to lose their acquired characters, whilst kept under unchanged conditions, and whilst kept in a considerable body, so that free intercrossing might check, by blending together, any slight deviations of structure, in such case, I grant that we could deduce nothing from domestic varieties in regard to species. But there is not a shadow of evidence in favour of this view: to assert that we could not breed our cart and race-horses, long and short-horned cattle, and poultry of various breeds, and esculent vegetables, for an almost infinite number of generations, would be opposed to all experience. I may add, that when under nature the conditions of life do change, variations and reversions of character probably do occur; but natural selection, as will hereafter be explained, will determine how far the new characters thus arising shall be preserved.

Read More Show Less

Table of Contents

A Chronology of Charles Darwin

On the Origin of Species 1

App. 1 Register of Writers 361

App. 2 Glossary of Scientific Terms 371

Index 385

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star

(0)

4 Star

(0)

3 Star

(0)

2 Star

(0)

1 Star

(0)

Your Rating:

Your Name: Create a Pen Name or

Barnes & Noble.com Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & Noble.com that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & Noble.com does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at BN.com or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation

Reminder:

  • - By submitting a review, you grant to Barnes & Noble.com and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Noble.com Terms of Use.
  • - Barnes & Noble.com reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & Noble.com also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on BN.com. It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

 
Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously
Sort by: Showing all of 2 Customer Reviews
  • Posted January 27, 2010

    Response to an Outdated Theory

    First of all, to the anonymous person, do a little research and look up the fish called Tiktaalik. Scientists have found fossils of this ancient fish that link it to amphibians. Its skull has spiracles on the top of it which suggest some sort of primitive lung. As for your rant on principle such as irreducible complexity, that too has been refuted. Perhaps you can look up the Dover Area School district case and Kenneth Miller's testimony against irreducible complexity and the bacterial flagellum. Also, Darwin never said humans evolved from Apes. That myth is actually from queen Victoria who misread this very book and deduced that to be so. And as you can imagine, in that time, for royalty to compare with a beast like a chimpanzee did not go over so well and she disregarded this book. Although the theory of evolution is a theory, gravity and other scientific presumptions such as Cell Theory are also theories but nobody in their right mind would deny that gravity exists now would they? Even if something were to fall up would you still deduce that gravity is false?

    7 out of 10 people found this review helpful.

    Was this review helpful? Yes  No   Report this review
  • Anonymous

    Posted March 16, 2010

    No text was provided for this review.

Sort by: Showing all of 2 Customer Reviews

If you find inappropriate content, please report it to Barnes & Noble
Why is this product inappropriate?
Comments (optional)