One Universe: At Home in the Cosmos


A new window opens onto the cosmos...

Almost every day we are challenged by new information from the outermost reaches of space. Using straightforward language, One Universe explores the physical principles that govern the workings of our own world so that we can appreciate how they operate in the cosmos around us. Bands of color in a sunlit crystal and the spectrum of starlight in giant telescopes, the arc of a hard-hit baseball and the orbit of the moon, traffic patterns on a ...

See more details below
Available through our Marketplace sellers.
Other sellers (Hardcover)
  • All (13) from $6.24   
  • New (1) from $40.00   
  • Used (12) from $6.24   
Sort by
Page 1 of 1
Showing All
Note: Marketplace items are not eligible for any coupons and promotions
Seller since 2005

Feedback rating:



New — never opened or used in original packaging.

Like New — packaging may have been opened. A "Like New" item is suitable to give as a gift.

Very Good — may have minor signs of wear on packaging but item works perfectly and has no damage.

Good — item is in good condition but packaging may have signs of shelf wear/aging or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Acceptable — item is in working order but may show signs of wear such as scratches or torn packaging. All specific defects should be noted in the Comments section associated with each item.

Used — An item that has been opened and may show signs of wear. All specific defects should be noted in the Comments section associated with each item.

Refurbished — A used item that has been renewed or updated and verified to be in proper working condition. Not necessarily completed by the original manufacturer.

1999 Hard cover NEW, Hardcover edition. ISBN 0309064880 New in new dust jacket. NEW, Hardcover edition. ISBN 0309064880 NEW, Hardcover edition. ISBN 0309064880 NEW, Hardcover ... edition. ISBN 0309064880 Read more Show Less

Ships from: San Marino, CA

Usually ships in 1-2 business days

  • Canadian
  • International
  • Standard, 48 States
  • Standard (AK, HI)
  • Express, 48 States
  • Express (AK, HI)
Page 1 of 1
Showing All
Sort by
Sending request ...


A new window opens onto the cosmos...

Almost every day we are challenged by new information from the outermost reaches of space. Using straightforward language, One Universe explores the physical principles that govern the workings of our own world so that we can appreciate how they operate in the cosmos around us. Bands of color in a sunlit crystal and the spectrum of starlight in giant telescopes, the arc of a hard-hit baseball and the orbit of the moon, traffic patterns on a freeway and the spiral arms in a galaxy full of stars--they're all tied together in grand and simple ways.

We can understand the vast cosmos in which we live by exploring three basic concepts: motion, matter, and energy. With these as a starting point, One Universe shows how the physical principles that operate in our kitchens and backyards are actually down-to-Earth versions of cosmic processes. The book then takes us to the limits of our knowledge, asking the ultimate questions about the origins and existence of life as we know it and where the universe came from--and where it is going.

Glorious photographs--many seen for the first time in these pages--and original illustrations expand and enrich our understanding. Evocative and clearly written, One Universe explains complex ideas in ways that every reader can grasp and enjoy. This book captures the grandeur of the heavens while making us feel at home in the cosmos. Above all, it helps us realize that galaxies, stars, planets, and we ourselves all belong to One Universe.

Read More Show Less

Editorial Reviews

Publishers Weekly - Publisher's Weekly
Startling, sparkling color photos and very accessible explanations of the laws and history of physics make this book a treat. Its pictures, clean diagrams, spiffy typography and bite-size takes on mass and energy--from quarks to Coriolis effects to quasars--mark its origins in a celebration: the volume coincides with the reopening of the Hayden Planetarium at Manhattan's American Museum of Natural History. Tyson (who runs the planetarium), Liu (a physicist at the museum) and Irion (a contributing editor at Science) make the science they explain sound both awesome and painless. The authors begin and end at the cosmological level, with the Big Bang and the expanding universe; in between, they cover black holes, meteor strikes, spectral lines, particle accelerators, "gravity waves" (which astronomers might find soon), extraterrestrial life (we're still looking) and the elusive particle called the Higgs boson (ditto). The expanding universe (in which galaxies constantly move apart from one another) gets illustrated with ladybugs on the surface of a balloon. Zippy orange computer-enhanced photos show how a solar system can coalesce from "a disk of leftover material swirling around a new star." A "hyperkinetic unicyclist" helps explain Einstein's special relativity. And sandy beachside toes, shown next to a potholder and an iron pan, illustrate how nonconducting materials prevent, while conducting materials facilitate, the transmission of heat. This is a book seemingly designed more to be browsed than to be read straight through, and it might not mind just being admired (especially if it sends readers to the planetarium). A glossary and timeline can help readers learn, look up and remember the info so many physicists worked hard to discover. 30,000 first printing. (Mar.) Copyright 2000 Cahners Business Information.|
Library Journal
This is a popular account of our current understanding of the universe's structure, origin, and ultimate future. Tyson and Charles Liu, two astrophysicists at the American Museum of Natural History in New York, and science writer Robert Irion (Astronomy and Science magazines) employ good, plain prose and avoid statements in mathematical language (though they occasionally express quantitative relationships in verbal terms). Large, bright illustrations take up roughly half the book; well chosen to enhance the text, they are appropriately located near the relevant written material. The information is up to date, including the latest observational findings and theoretical proposals. Overall, this is a very attractive, accessible introduction to modern astrophysics for lay readers, including advanced high school students as well as adults. It is strongly recommended for all public libraries and would also be an appropriate acquisition for undergraduate college libraries.--Jack W. Weigel, Ann Arbor, MI Copyright 2000 Cahners Business Information.\
School Library Journal
YA-This neatly organized oversized book packs information on the three fundamental aspects of nature: motion (everything moves); matter (the stuff of the universe); and energy (the power of cosmic phenomena). The volume represents an impressive melding of well-written, graphically pleasing text and awe-inspiring illustrations and photographs. Most YAs don't give much thought to their personal connection to the cosmos; however, these reputable scientists use the basic principles of astronomy and physics to guide them through a journey of reflection. The illustrations and analogies help make complicated concepts seem simple. For example, the use of basketball analogies helps readers visualize the "scale of our solar system" and how impossible it would be for Star Trek's Enterprise to pass by stars so rapidly unless it were traveling "500 million times faster than the speed of light." Scholarly and fun, this title will infect readers with the authors' joy and mastery of their subject.-Bobbi Thomas Skaggs, Cedar Lane High School, Fairfax County, VA Copyright 2000 Cahners Business Information.
Published in conjunction with the opening of the new Rose Center for Earth and Space at the American Museum of Natural History, this book explains the physics of the cosmos in terms of familiar principles at work here on earth (e.g., the force of gravity that lands a baseball in the bleachers also keeps the moon in orbit). Sections cover motion, matter, and energy and are beautifully illustrated with photos and diagrams. Concepts of cosmology are saved for the final chapter, which covers string theory, black holes, dark matter, gamma-ray bursts, cosmological inflation, the Big Bang, and the search for extraterrestrial life. Annotation c. Book News, Inc., Portland, OR (
From The Critics
Both text and pictures sparkle in this contemporary view of our cosmos. Not a textbook, One Universe is a survey of a wide variety of astronomical topics meant to inform and inspire the reader. The large format (91/2 (121/2 in., or 25 ( 31 cm) and high-quality paper display the artwork to outstanding effect; fantastic photos are linked to excellent drawings.

The book is unconventionally organized, with units titled "Motion," "Matter," "Energy," and "Frontiers." The unit on motion begins with Hubble and the expanding universe, illustrated with a handsome and instructive drawing of ladybugs on an expanding sphere. Good physics is mixed in with the astronomy. Galileo's idea of inertia and Newton's laws of motion appear on a page with a photograph of Galileo's own drawings of the positions of the moons of Jupiter that he discovered.

The book marks the opening in February 2000 of the Rose Center for Earth and Space of the American Museum of Natural History in New York.. The center includes the revised Hayden Planetarium in an 87-foot sphere that is completely visible from the outside of a surrounding cube that has three transparent faces. Author Tyson is director of the planetarium, and both he and Liu are on the research staff of the museum, as well as having academic appointments at Princeton and Columbia, respectively. Irion is a noted science journalist. Together, their prose is accurate and very readable.

Astronomical topics such as supernovas and black holes are covered, and so are physics points of view like relativity. The latest image of the supernova remnant known as Cassiopeia A from 1999's Chandra X-ray Observatory is accompanied by images in other parts of the spectrum forcomparison. Clear discussions of the greenhouse effect, the evolution of stars of different masses, and windows of transparency in the Earth's atmosphere are accompanied by beautiful, striking artwork.

One Universe: At Home in the Cosmos can be an inspiration, and I recommend it to all. Highly Recommended, Grades 7-College, Teaching Professional, General Audience. REVIEWER: Dr. Jay M. Pasachoff (Williams College)

Scott Veale
What's most refreshing about this road trip through the heavens is the humility of its authors in the face of so much that is unknowable or dimly understood, even as they patiently but eloquently provide one-stop shopping for students of the cosmos.
The New York Times Book Review
June 2000 Observatory
Taking as its basis the three key concepts of motion, matter, and energy, this book explores how the same physical principles that operate in our everyday lives govern the structure and behaviour of stars, planets, galaxies, and the Universe as a whole. The clear and engaging prose is copiously laced with a wealth of apposite and illuminating analogies, scale models, and metaphors that make grand and complex concepts easy to grasp, and which emphasise the book's central thesis that we ourselves are very much a part of, and intimately related to, the Universe on the largest and smallest scales. For example, the relative strengths of the electromagnetic forces are neatly conveyed by looking at how a tiny amount of static electricity will cause a balloon to stick to a sweater in defiance of gravity and by pointing out that two pounds of electrons clumped together on the far side of the Moon would be enough to overwhelm Earth's gravitational influence and tear the Moon out of its orbit. The text is further enhanced by a wealth of beautiful and carefully selected images, diagrams, and artworks. Although readers outside of the USA may be surprised to find that pounds, feet, miles, and degrees Fahrenheit are used throughout, the fact remains that these units are still more familiar and 'friendly' to many potential readers.
From the trajectories of baseballs to the orbits of planets, the tidal interactions of galaxies, and gravitational lensing, or from the periodic table to nucleosynthesis in supernovae, the skillfully-crafted text weaves together an amazing range of subjects and concepts into a logically-developed, coherent, and stimulating whole. The nature of matter and energy, atoms, quarks, grand unified theory, and strings, collapsed matter, black holes, gamma-ray bursts, dark matter, and the cosmological constant are just a few of the multitude of topics that are handled with skill and dexterity by the authors. Like a good detective novel, this is a book that is difficult to put down. It can be dipped into, but a reader is much more likely to feel compelled to read it straight through from cover to cover. This is one of those rare books that achieves exactly what it sets out to do. I greatly enjoyed reading it and would strongly recommend it to anyone who is looking for a clear, accessible, accurate, and up-to-date guide to the physical Universe and our place within it. --The Observatory: A Review of Astronomy June 2000
July 2000 Astronomy
Anyone looking for a book that takes readers from everyday life to the edges of the universe and back needs to check our One Universe: At Home in the Cosmos by astrophysicists Neil de Grasse Tyson (author of The Sky Is Not the Limit) and Charles Liu, and science journalist Robert Irion (an Astronomy contributing editor. The mental journey is so painless that even vaguely interested page-turners will learn in spite of themselves.
Divided into four parts that tackle motion, matter, energy, and frontiers, One Universe manages to shed the reputation of most coffee-table books by being more than just a pretty face. Instead, expect a copiously illustrated journey through good science - although sometimes at too low a level for more sophisticated astronomy buffs- with solid examples that drive home even arcane points in a straightforward manner. Each new topic compels the reader onward. So pick it up and start reading anywhere. --Astronomy July 2000
Read More Show Less

Product Details

  • ISBN-13: 9780309064880
  • Publisher: National Academies Press
  • Publication date: 12/20/1999
  • Edition description: New Edition
  • Pages: 224
  • Product dimensions: 9.82 (w) x 12.33 (h) x 1.02 (d)

Read an Excerpt


Our Connection to the Universe

Millions of stars fill the sky near the center of our galaxy, the Milky Way. As we gaze at these dazzling but distant points of light, it's hard to imagine that many of them may be suns in planetary systems like our own.

We live in a universe filled with wonders. Comets hang like celestial torches before fading on their long journeys into space. The sun descends in a golden blaze on a summer evening, and countless stars spill from zenith to horizon through the dark night. At such moments, our cosmos inspires awe.

However, we rarely feel connected to the cosmos. We live at a hectic pace on a warm planet, insulated from the universe by the bright blue dome of sky. At night, when the heavens open up to us, we seldom cast more than a glance overhead. Even when we do notice the grandeur of the universe, it seems utterly separate from our lives. Planets, stars, and galaxies appear so small to our eyes that we cannot comprehend their enormous sizes, so far away that we cannot grasp the vast gulf of space between them, and so exotic that we cannot understand how they work. Our experiences on Earth seem so different from these wonders that nature surely must have followed another set of rules in creating them. Can we ever hope to divine those cosmic principles?

The answer is a resounding "Yes." A deep insight has emerged from astronomy and physics: The basic forces, quantities, and processes that govern our lives on Earth and that govern the workings of the universe are one and the same. In fact nature¹s laws are fewer in number, and often simpler, than the laws that human societies invent. We can study the natural laws on our planet and in our neighborhood in space, then use those laws to understand the behaviors of objects that lie forever out of reach. In so doing, we have learned that no wall separates our Earth and sky from the rest of the cosmos. We live in One Universe.

Some of those connections are easy to see. A crystal hanging in a window lights the room with bands of color on a sunny day. We use more elaborate crystals to break up light from stars and galaxies. Special instruments extract hidden details from those delicate rainbows, revealing what the objects are made of and how they move through space. Baseball fans watch the cosmos at work when they follow the arc of a home run soaring into the bleachers. The arc is a perfect illustration of the ever-present force of gravity, which pins us to the ground, keeps the Moon in orbit around Earth, and steers our Sun through our Milky Way galaxy. The Moon and the Sun also exert gravitational pulls on Earth, creating tides that we see as the twice-daily ebb and flow of the ocean. Stronger tides elsewhere in the universe turn the insides of moons to mush and stretch pairs of closely orbiting stars into egglike shapes.

Other connections come from watching things spin, a property that applies to nearly everything in space. The whirl of a gyroscope, as children know, prevents it from toppling on its side. Telescopes in space take advantage of that same principle by using three gyroscopes to keep a steady aim. On a larger scale, Earth's daily rotation on its axis stirs our atmosphere and stretches storms into spiral shapes. Other planets display similar stormy patterns, such as Jupiter's Great Red Spot.

Some of our links to the cosmos are more surprising, for they involve events too extreme to occur on Earth. For instance, the largest stars blow up in titanic blasts that seed the galaxy with heavy elements, such as iron, calcium, and silicon. These elements come only from stars; the universe has no other way to create them. They drift into clouds of gas and dust which collapse into a new generation of stars, planets, and--in our case--life. In other words, dying stars forged the elements that compose the blood in our veins, the bones in our bodies, and the chips in our computers. The stuff of stars is all around us even though the stars themselves seem so inaccessible.

Our awareness of these connections has grown as we have studied the natural world for thousands of years. The earliest natural philosophers--Plato, Aristotle, and Archimedes among them--tried to use their five senses, in combination with logic and reason, to explain the cosmos. However, their preconceptions got in the way. Earth sat unmoving at the center of the universe, they believed, and the celestial bodies moved around it in perfect patterns. These beliefs also affected their view of physical principles on Earth. For instance, Aristotle asserted that heavier objects fall faster than light objects, but he never bothered to put that claim to the test.

Our modern approach to gathering knowledge about the universe draws from traditions established by Galileo Galilei, Isaac Newton, Albert Einstein, and other great minds of the past several centuries. These physicists didn¹t care whether their results conformed to common-sense views about how the universe worked. Rather, they devised careful theories based on repeated experiments and mathematical analysis. Their theories strove to explain some of what was not understood, predict previously unknown phenomena, and consistently confirm their predictions by further tests. Describing nature as it was, not as the scientists supposed it to be, was at the heart of this scientific method.

In this way, for example, Newton assembled methodical descriptions of how objects move through the universe at everyday speeds. Much later, Einstein found more basic rules that explain how all objects move, even those that travel close to the speed of light. Newton's work was still correct, but it became a special part of Einstein's overall theory. This process is typical of science. Modern technology provides more penetrating insights about nature, leading to new theories that are more accurate but increasingly simpler at their cores. Rarely does a completely surprising phenomenon arise that forces us to overturn all aspects of an existing theory.

Today, we benefit from the creative use of technology to extend our vision far beyond Earth's surface and our solar system. Telescopes, spectrographs, electronic cameras, and other tools collect data every night from the farthest corners of the cosmos, revealing what our unaided eyes could never see. We also use computers to simulate processes that we cannot duplicate in laboratories on Earth. For instance, computer models shed light on the pervasive influence of gravity, which extends invisible tendrils across the entire cosmos. The programs calculate billions of years of gravitational interactions among galaxies to show why the universe looks the way it does today.

These scientific pursuits rely upon studies of three fundamental aspects of nature: motion, matter, and energy. Motion is a logical starting point, since everything move--from the atoms in stationary objects to the most distant galaxies. Ancient observers founded the science of astronomy by charting the motions of the Sun, Moon, stars, and planets in painstaking detail. Today, our telescopes and observing tools are sensitive enough to detect planets around other stars. But we have learned that the motions of celestial objects are ever-changing. Just slight alterations in their paths through space can have dramatic consequences. For that reason we keep a wary eye on space, watching for comets and asteroids that could be headed our way.

Matter comes in many forms, from the familiar objects in our homes to exotic varieties in space. These diverse substances share a list of ingredients: about 100 unique elements. Most are in short supply--our universe consists almost entirely of hydrogen and helium, with just a dash of heavier elements thrown in. On Earth we are accustomed to seeing matter within the narrow range of temperatures and pressures that make life possible. But such conditions are rare elsewhere. Just a few atoms drift here and there in the cold spaces between stars and galaxies. Within a star, it's hot and dense enough to ignite nuclear fusion--an energy bonanza we haven¹t yet harnessed. The strangest objects in the universe are forms of matter we will never create here: neutron stars and black holes.

When matter is put in motion, it emits energy. Energetic outbursts throughout the cosmos give us insights into objects that we otherwise would never detect. A star explodes somewhere once every second, blasting light and ghostly particles called neutrinos into space. Gas plunges into black holes at the centers of galaxies, releasing waves of x-rays. The Sun is a constantly churning ball of charged gas laced with magnetic fields that writhe and snap, propelling dangerous flares toward Earth. Our eyes are tuned to a tiny part of this rich display of energy, but the rest bombards us and our planet constantly. We have devised clever ways to see those elusive waves, from giant radio receivers on the ground to x-ray and gamma-ray telescopes in orbit.

Beyond these ongoing studies, we face steeper challenges ahead. Some of the questions at the frontiers of cosmological science today seem extraordinarily hard to address: Have matter and energy combined to create life elsewhere? What are the essential ingredients of matter? Does a single theory of physics describe the behaviors of all forces and particles in the universe? What sparked the birth of the universe? What is its ultimate fate, after all the suns have burned out?

We will explore these questions with the same scientific tools that have revealed the universal laws of nature so far. For instance, searches for life on other planets are planned or under way with space probes and observations from Earth. Particle colliders probe ever more deeply into the nesting Russian doll of the atom. The bizarre consequences of modern physics suggest that the tiniest components of matter, which dwell in a Wonderland that we are straining to comprehend, may have sown the seeds of the universe itself. As for the future, we have found hints that an eerie force of repulsion permeates the universe, forcing it to expand more quickly as time goes on.

Our studies of the distant universe move forward because we are confident that the principles of physics governing nature on Earth also apply throughout the cosmos. Basic quantities such as the strength of gravity or the charge of an electron remain the same--within the limits of our abilities to measure them--no matter where one goes. Atoms shine or decay radioactively in a laboratory on Earth in the same way as they do billions of light-years across space. Magnetic fields exist everywhere and affect charged particles in the same way.

What's more, our Sun is an ordinary star, like billions of others in the Milky Way. Our galaxy is much like other spiral galaxies in the universe. It¹s quite likely that our planet is just one of countless rocky planets orbiting stars at hospitable distances--not too hot, not too cold. Five hundred years ago, Nicolaus Copernicus voiced the notion that there is nothing special about our place in the cosmos or the time in which we live. The Copernican principle still holds sway. It gives us the freedom to apply what we know about Earth, the Sun, and the Milky Way to any other location in the cosmos because we assume the laws of nature here are quite ordinary.

On the largest scales of all, we are finding that the universe looks the same in every direction. Any big chunk of space contains galaxies arrayed in similar patterns as any other big chunk. The faint remnants of heat left over from the explosive origin of the universe are smooth across the entire sky to within one part in 100,000. We refer to this large-scale uniformity of the universe as the cosmological principle. It makes it even more likely that the natural laws on our cosmic city block are the same as those elsewhere.

Indeed, as we tour the cosmos, we will find that the behaviors of the largest and smallest objects spring from the same physical principles. Between these extreme scales lies the universe as we know it: grains of sand, babies, jumbo jets, our planet and its neighbors in space. The physics of this comfortable world offers us a template to understand the mysteries of our One Universe.
Read More Show Less

Table of Contents

INTRODUCTION: Our Connection to the Universe

MOTION: Everything Moves
The Expanding Universe
Motion Through the Millennia
The Universe Goes 'Round
Gravity's Hold on the Cosmos
Gravity and Light
The Eternal Free Fall of Orbits
Gravity Rules

MATTER: The Stuff of the Universe
Matter's Many Guises
The Scarcity of Matter
We Are Stardust
The Physics of Dense Matter
Too Much Matter

ENERGY: The Power of Cosmic Phenomena
Energy Powers the Universe
By the Light of a Star
Probing Space with Spectra
Electromagnetism at Work
Sighting the Superenergetic
Evidence for Supermassive Black Holes

FRONTIERS: The Limits of Motion, Matter, and Energy
Does Matter + Energy = Life?
Where Did the Universe Come From?
How Small Does Matter Get?
The Source of Big Explosions
Where Does the Universe Go From Here?
What Lies Ahead

Progress in Understanding the Cosmos: A Selected Chronology
About the Authors
Read More Show Less

Interviews & Essays

Exclusive Author Essay

At my high school's 20-year reunion, during the obligatory assessments of how well time had treated us all, I won the "coolest job" contest in a straw poll of those attending. As an astrophysicist and director of New York City's Hayden Planetarium, I get to spend my days decoding the nature of the universe and creating journeys through the cosmos for the public to see.

Almost before I could pronounce "astrophysicist," I knew I wanted to be one. For my original inspiration I had simply looked up to the sky with binoculars and small telescopes. But to further my education I looked to books. I started my own neighborhood dog-walking service to support my book-buying habit. I first began snapping up Isaac Asimov's nonfiction works on the universe. I had met Asimov as a teenager on board the SS Canberra, which had been converted to a floating science lab where all manner of astrophysical experiments were conducted. The trip's mission was to record one of the longest eclipses on record back in 1973. The prolific Dr. Asimov gave a thoroughly entertaining and informative lecture (steeped in his inimitable Brooklyn accent) on the history of eclipses. I went home and immediately bought as many of his books as I could lay my hands on. Books such as Asimov's Chronology of Science & Discovery and Isaac Asimov's Guide to Earth and Space made me look beyond my own world into places I had only begun to imagine. Happily enough, 15 years later, I would remind Dr. Asimov of this eclipse cruise in a letter, humbly requesting that he write a jacket blurb for my first book, a Q&A on the cosmos, Merlin's Tour of the Universe. Asimov agreed, and thus my own writing career was born.

In my early teens, because my dog-walking business was a success, I continued to add to my library. George Gamow's One, Two, Three...Infinity remains the most influential science book I have ever read, with Edward Kasner and James R. Newman's Mathematics and the Imagination coming in a close second. Both are terrific books by authors who could equally enlighten and entertain the reader.

Later, as a scientist thinking about reaching out to the public, I was drawn to the popular works of Carl Sagan. He could communicate complex scientific ideas and issues using simple poetic imagery. My contemporary Sagan collection includes his memoir, Billions & Billions, as well as his acclaimed Demon-Haunted World: Science as a Candle in the Dark and Broca's Brain. My favorite of the recent biographies is William Poundstone's Carl Sagan: A Life in the Cosmos. Sagan wrote his books out of a deep love for astronomy and an even deeper love for teaching it to others.

I have tried hard with my own books to create the feeling of accessibility and oneness with the universe. I have tried to bring down to earth the knowledge that we are at home in the cosmos.

Neil de Grasse Tyson is the Frederick P. Rose Director of the Hayden Planetarium at the American Museum of Natural History in New York City and a visiting research scientist in astrophysics at Princeton University. Since 1995, Tyson has written the popular monthly essay "Universe" for Natural History magazine. A graduate of the Bronx High School of Science, Tyson earned a B.A. in physics from Harvard College and a Ph.D. in astrophysics from Columbia University.

Read More Show Less

Customer Reviews

Be the first to write a review
( 0 )
Rating Distribution

5 Star


4 Star


3 Star


2 Star


1 Star


Your Rating:

Your Name: Create a Pen Name or

Barnes & Review Rules

Our reader reviews allow you to share your comments on titles you liked, or didn't, with others. By submitting an online review, you are representing to Barnes & that all information contained in your review is original and accurate in all respects, and that the submission of such content by you and the posting of such content by Barnes & does not and will not violate the rights of any third party. Please follow the rules below to help ensure that your review can be posted.

Reviews by Our Customers Under the Age of 13

We highly value and respect everyone's opinion concerning the titles we offer. However, we cannot allow persons under the age of 13 to have accounts at or to post customer reviews. Please see our Terms of Use for more details.

What to exclude from your review:

Please do not write about reviews, commentary, or information posted on the product page. If you see any errors in the information on the product page, please send us an email.

Reviews should not contain any of the following:

  • - HTML tags, profanity, obscenities, vulgarities, or comments that defame anyone
  • - Time-sensitive information such as tour dates, signings, lectures, etc.
  • - Single-word reviews. Other people will read your review to discover why you liked or didn't like the title. Be descriptive.
  • - Comments focusing on the author or that may ruin the ending for others
  • - Phone numbers, addresses, URLs
  • - Pricing and availability information or alternative ordering information
  • - Advertisements or commercial solicitation


  • - By submitting a review, you grant to Barnes & and its sublicensees the royalty-free, perpetual, irrevocable right and license to use the review in accordance with the Barnes & Terms of Use.
  • - Barnes & reserves the right not to post any review -- particularly those that do not follow the terms and conditions of these Rules. Barnes & also reserves the right to remove any review at any time without notice.
  • - See Terms of Use for other conditions and disclaimers.
Search for Products You'd Like to Recommend

Recommend other products that relate to your review. Just search for them below and share!

Create a Pen Name

Your Pen Name is your unique identity on It will appear on the reviews you write and other website activities. Your Pen Name cannot be edited, changed or deleted once submitted.

Your Pen Name can be any combination of alphanumeric characters (plus - and _), and must be at least two characters long.

Continue Anonymously

    If you find inappropriate content, please report it to Barnes & Noble
    Why is this product inappropriate?
    Comments (optional)