Open Source GIS: A GRASS GIS Approach / Edition 3

Open Source GIS: A GRASS GIS Approach / Edition 3

by Markus Neteler, Helena Mitasova

View All Available Formats & Editions

ISBN-10: 038735767X

ISBN-13: 9780387357676

Pub. Date: 11/15/2007

Publisher: Springer US

With this third edition of Open Source GIS: A GRASS GIS Approach, we enter the new era of GRASS6, the first release that includes substantial new code developed by the International GRASS Development Team. The dramatic growth in open source software libraries has made the GRASS6 development more efficient, and has enhanced GRASS interoperability with a wide


With this third edition of Open Source GIS: A GRASS GIS Approach, we enter the new era of GRASS6, the first release that includes substantial new code developed by the International GRASS Development Team. The dramatic growth in open source software libraries has made the GRASS6 development more efficient, and has enhanced GRASS interoperability with a wide range of open source and proprietary geospatial tools.

Thoroughly updated with material related to the GRASS6, the third edition includes new sections on attribute database management and SQL support, vector networks analysis, lidar data processing and new graphical user interfaces. All chapters were updated with numerous practical examples using the first release of a comprehensive, state-of-the-art geospatial data set.

Open Source GIS: A GRASS GIS Approach (third edition) preserves the continuity of previous editions by maintaining the proven book’s structure and continues to target a professional audience composed of researchers and practitioners in government and industry as well as graduate students interested in geospatial analysis and modeling.

Product Details

Springer US
Publication date:
Edition description:
3rd ed. 2008
Product dimensions:
6.10(w) x 9.25(h) x 0.36(d)

Table of Contents

Open Source software and GIS     1
Open Source concept     1
GRASS as an Open Source GIS     3
The North Carolina sample data set     5
How to read this book     5
GIS concepts     7
General GIS principles     7
Geospatial data models     7
Organization of GIS data and system functionality     11
Map projections and coordinate systems     13
Map projection principles     13
Common coordinate systems and datums     16
Getting started with GRASS     21
First steps     21
Download and install GRASS     21
Database and command structure     23
Graphical User Interfaces for GRASS 6: QGIS and gis.m     26
Starting GRASS with the North Carolina data set     27
GRASS data display and 3D visualization     30
Project data management     34
Starting GRASS with a new project     37
Defining the coordinate system for a new project     40
Non-georeferenced xy coordinate system     44
Coordinate system transformations     44
Coordinate lists     45
Projection of raster and vector maps     47
Reprojecting with GDAL/OGR tools     48
GRASS data models and data exchange     53
Raster data     54
GRASS 2D and 3D raster data models     54
Managing regions, raster map resolution and boundaries     56
Import of georeferenced raster data     58
Import and geocoding of a scanned historical map     66
Raster data export     69
Vector data     70
GRASS vector data model     70
Import of vector data     73
Coordinate transformation for xy CAD drawings     78
Export of vector data     80
Working with raster data     83
Viewing and managing raster maps     83
Displaying raster data and assigning a color table     83
Managing metadata of raster maps     86
Raster map queries and profiles     88
Raster map statistics     90
Zooming and generating subsets from raster maps     91
Generating simple raster maps     92
Reclassification and rescaling of raster maps     94
Recoding of raster map types and value replacements     97
Assigning category labels     99
Masking and handling of no-data values     103
Raster map algebra     105
Integer and floating point data     107
Basic calculations     108
Working with "if" conditions     109
Handling of NULL values in r.mapcalc     110
Creating a MASK with r.mapcalc     111
Special graph operators     112
Neighborhood operations with relative coordinates     113
Raster data transformation and interpolation     115
Automated vectorization of discrete raster data     115
Generating isolines representing continuous fields     118
Resampling and interpolation of raster data     119
Overlaying and merging raster maps     124
Spatial analysis with raster data     126
Neighborhood analysis and cross-category statistics     126
Buffering of raster features     133
Cost surfaces     135
Terrain and watershed analysis     140
Landscape structure analysis     153
Landscape process modeling     155
Hydrologic and groundwater modeling     155
Erosion and deposition modeling     158
Final note on raster-based modeling and analysis     166
Working with voxel data     166
Working with vector data      169
Map viewing and metadata management     169
Displaying vector maps     169
Vector map metadata maintenance     172
Vector map attribute management and SQL support     173
SQL support in GRASS 6     174
Sample SQL queries and attribute modifications     181
Map reclassification     185
Vector map with multiple attribute tables: layers     186
Digitizing vector data     187
General principles for digitizing topological data     187
Interactive digitizing in GRASS     189
Vector map queries and statistics     192
Map queries     192
Raster map statistics based on vector objects     194
Point vector map statistics     196
Geometry operations     196
Topological operations     197
Buffering     203
Feature extraction and boundary dissolving     204
Patching vector maps     205
Intersecting and clipping vector maps     206
Transforming vector geometry and creating 3D vectors     209
Convex hull and triangulation from points     211
Find multiple points in same location     212
Length of common polygon boundaries      214
Vector network analysis     216
Network analysis     216
Linear reference system (LRS)     221
Vector data transformations to raster     227
Spatial interpolation and approximation     230
Selecting an interpolation method     230
Interpolation and approximation with RST     235
Tuning the RST parameters: tension and smoothing     237
Estimating RST accuracy     241
Segmented processing     244
Topographic analysis with RST     247
Working with lidar point cloud data     249
Volume based interpolation     257
Adding third variable: precipitation with elevation     258
Volume and volume-temporal interpolation     261
Geostatistics and splines     262
Graphical output and visualization     263
Two-dimensional display and animation     263
Advanced map display in the GRASS monitor     263
Creating a 2D shaded elevation map     266
Using display tools for analysis     267
Monitor output to PNG or PostScript files     269
Creating hardcopy maps with     271
Visualization in 3D space with NVIZ     273
Viewing surfaces, raster and vector maps     273
Querying data and analyzing multiple surfaces     279
Creating animations in 3D space     280
Visualizing volumes     283
Coupling with an external OpenGL viewer Paraview     284
Image processing     287
Remote sensing basics     287
Spectrum and remote sensing     287
Import of image channels     291
Managing channels and colors     292
The feature space and image groups     295
Data preprocessing     297
Radiometric preprocessing     297
Deriving a surface temperature map from thermal channel     300
Radiometric transformations and image enhancements     303
Image ratios     303
Principal Component Transformation     305
Geometric feature analysis with matrix filters     307
Image fusion     310
Introduction to RGB and IHS color model     310
Image fusion with the IHS transformation     311
Image fusion with Brovey transform     313
Thematic classification of satellite data     314
Unsupervised radiometric classification     316
Supervised radiometric classification      319
Supervised SMAP classification     322
Multitemporal analysis     323
Segmentation and pattern recognition     326
Notes on GRASS programming     331
GRASS programming environment     331
GRASS source code     332
Methods of GRASS programming     333
Level of integration     334
Script programming     335
Automated usage of GRASS     338
Local mode: GRASS as GIS data processor     338
Web based: PyWPS - Python Web Processing Service     340
Notes on programming GRASS modules in C     341
Using GRASS with other Open Source tools     347
Geostatistics with GRASS and gstat     348
Spatial data analysis with GRASS and R     353
Reading GRASS data into R     355
Kriging in R     358
Using R in batch mode     363
GPS data handling     364
WebGIS applications with UMN/MapServer and OpenLayers     365
Appendix     367
Selected equations used in GRASS modules     367
Landscape process modeling     381
Definition of SQLite-ODBC connection     383
References     385
Index      393

Customer Reviews

Average Review:

Write a Review

and post it to your social network


Most Helpful Customer Reviews

See all customer reviews >