Optimization Algorithms for Distributed Machine Learning
This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
1142508497
Optimization Algorithms for Distributed Machine Learning
This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
44.99 In Stock
Optimization Algorithms for Distributed Machine Learning

Optimization Algorithms for Distributed Machine Learning

by Gauri Joshi
Optimization Algorithms for Distributed Machine Learning

Optimization Algorithms for Distributed Machine Learning

by Gauri Joshi

eBook1st ed. 2023 (1st ed. 2023)

$44.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.

Product Details

ISBN-13: 9783031190674
Publisher: Springer-Verlag New York, LLC
Publication date: 11/25/2022
Series: Synthesis Lectures on Learning, Networks, and Algorithms
Sold by: Barnes & Noble
Format: eBook
File size: 17 MB
Note: This product may take a few minutes to download.

About the Author

Gauri Joshi, Ph.D., is an Associate Professor in the ECE department at Carnegie Mellon University. Dr. Joshi completed her Ph.D. from MIT EECS. Her current research is on designing algorithms for federated learning, distributed optimization, and parallel computing. Her awards and honors include being named as one of MIT Technology Review's 35 Innovators under 35 (2022), the NSF CAREER Award (2021), the ACM SIGMETRICS Best Paper Award (2020), Best Thesis Prize in Computer science at MIT (2012), and Institute Gold Medal of IIT Bombay (2010).

Table of Contents

​Distributed Optimization in Machine Learning.- Calculus, Probability and Order Statistics Review.- Convergence of SGD and Variance-Reduced Variants.- Synchronous SGD and Straggler-Resilient Variants.- Asynchronous SGD and Staleness-Reduced Variants.- Local-update and Overlap SGD.- Quantized and Sparsified Distributed SGD.-Decentralized SGD and its Variants.
From the B&N Reads Blog

Customer Reviews