×

Uh-oh, it looks like your Internet Explorer is out of date.

For a better shopping experience, please upgrade now.

Optimization / Edition 1
     

Optimization / Edition 1

by Kenneth Lange
 

ISBN-10: 038720332X

ISBN-13: 9780387203324

Pub. Date: 06/17/2004

Publisher: Springer-Verlag New York, LLC

Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students’ skills in calculus and linear algebra, the

Overview

Finite-dimensional optimization problems occur throughout the mathematical sciences. The majority of these problems cannot be solved analytically. This introduction to optimization attempts to strike a balance between presentation of mathematical theory and development of numerical algorithms. Building on students’ skills in calculus and linear algebra, the text provides a rigorous exposition without undue abstraction. Its stress on statistical applications will be especially appealing to graduate students of statistics and biostatistics. The intended audience also includes students in applied mathematics, computational biology, computer science, economics, and physics who want to see rigorous mathematics combined with real applications.

In this second edition the emphasis remains on finite-dimensional optimization. New material has been added on the MM algorithm, block descent and ascent, and the calculus of variations. Convex calculus is now treated in much greater depth. Advanced topics such as the Fenchel conjugate, subdifferentials, duality, feasibility, alternating projections, projected gradient methods, exact penalty methods, and Bregman iteration will equip students with the essentials for understanding modern data mining techniques in high dimensions.

Product Details

ISBN-13:
9780387203324
Publisher:
Springer-Verlag New York, LLC
Publication date:
06/17/2004
Series:
Springer Texts in Statistics Series
Edition description:
2004
Pages:
268
Product dimensions:
0.75(w) x 6.14(h) x 9.21(d)

Table of Contents

Elementary Optimization.- The Seven C’s of Analysis.- The Gauge Integral.- Differentiation.- Karush-Kuhn-Tucker Theory.- Convexity.- Block Relaxation.- The MM Algorithm.- The EM Algorithm.- Newton’s Method and Scoring.- Conjugate Gradient and Quasi-Newton.- Analysis of Convergence.- Penalty and Barrier Methods.- Convex Calculus.- Feasibility and Duality.- Convex Minimization Algorithms.- The Calculus of Variations.- Appendix: Mathematical Notes.- References.- Index.

Customer Reviews

Average Review:

Post to your social network

     

Most Helpful Customer Reviews

See all customer reviews