The Organic Machine: The Remaking of the Columbia River

The Hill and Wang Critical Issues Series: concise, affordable works on pivotal topics in American history, society, and politics.

In this pioneering study, White explores the relationship between the natural history of the Columbia River and the human history of the Pacific Northwest for both whites and Native Americans. He concentrates on what brings humans and the river together: not only the physical space of the region but also, and primarily, energy and work. For working with the river has been central to Pacific Northwesterners' competing ways of life. It is in this way that White comes to view the Columbia River as an organic machine--with conflicting human and natural claims--and to show that whatever separation exists between humans and nature exists to be crossed.

1114739959
The Organic Machine: The Remaking of the Columbia River

The Hill and Wang Critical Issues Series: concise, affordable works on pivotal topics in American history, society, and politics.

In this pioneering study, White explores the relationship between the natural history of the Columbia River and the human history of the Pacific Northwest for both whites and Native Americans. He concentrates on what brings humans and the river together: not only the physical space of the region but also, and primarily, energy and work. For working with the river has been central to Pacific Northwesterners' competing ways of life. It is in this way that White comes to view the Columbia River as an organic machine--with conflicting human and natural claims--and to show that whatever separation exists between humans and nature exists to be crossed.

9.99 In Stock
The Organic Machine: The Remaking of the Columbia River

The Organic Machine: The Remaking of the Columbia River

by Richard White
The Organic Machine: The Remaking of the Columbia River

The Organic Machine: The Remaking of the Columbia River

by Richard White

eBook

$9.99 

Available on Compatible NOOK devices, the free NOOK App and in My Digital Library.
WANT A NOOK?  Explore Now

Related collections and offers


Overview

The Hill and Wang Critical Issues Series: concise, affordable works on pivotal topics in American history, society, and politics.

In this pioneering study, White explores the relationship between the natural history of the Columbia River and the human history of the Pacific Northwest for both whites and Native Americans. He concentrates on what brings humans and the river together: not only the physical space of the region but also, and primarily, energy and work. For working with the river has been central to Pacific Northwesterners' competing ways of life. It is in this way that White comes to view the Columbia River as an organic machine--with conflicting human and natural claims--and to show that whatever separation exists between humans and nature exists to be crossed.


Product Details

ISBN-13: 9781429952422
Publisher: Farrar, Straus and Giroux
Publication date: 04/01/2011
Series: Hill and Wang Critical Issues
Sold by: Macmillan
Format: eBook
Pages: 144
File size: 291 KB

About the Author

Richard White, professor of History at the University of Washington in Seattle, is the author of The Middle Ground and It's Your Misfortune and None of My Own and the recipient of the Albert J. Beveridge and Western Heritage awards.


Richard White is a Professor of Philosophy at Creighton University in Omaha, USA. His recent books include: The Spiritual Guide (2017), The Heart of Wisdom: a Philosophy of Spiritual Life (2013), and Radical Virtues (2008).

Read an Excerpt

The Organic Machine


By Richard White

Hill and Wang

Copyright © 1995 Richard White
All rights reserved.
ISBN: 978-1-4299-5242-2



CHAPTER 1

Knowing Nature through Labor: Energy, Salmon Society on the Columbia

I

The world is in motion. Tectonic plates drift across a spinning planet. Mountains are lifted up and eroded to the sea. Glaciers advance and retreat. All natural features move, but few natural features move so obviously as rivers. Our metaphors for rivers are all metaphors of movement: they run and roll and flow.

Like us, rivers work. They absorb and emit energy; they rearrange the world. The Columbia has been working for millennia. During the Miocene, volcanic eruptions deposited layers of basalt across the Columbia Plain. The upper Columbia cut a gutter through which it ran along the margins of the basaltic flow. At Wenatchee the rise of the Horse Heaven anticline caused the river to cut into the basalt; it drained into the Pasco basin, the lowest point on its route east of the Cascades, and emerged from the basin at the Wallula Gap. During the Pleistocene the collapse of an ice dam holding glacial Lake Missoula created the largest known freshwater flood in the earth's history. It was an afternoon's work for one of the Missoula floods to create the Grand Coulee and other rock channels of the Channeled Scablands. In those few hours it accomplished work that it would have taken the Mississippi three hundred years at full flood to duplicate. The flood rushed into the Columbia channel and finally slowed enough to create the "Portland Delta" of the Willamette lowlands. Since then ice dams have blocked the Columbia's bed, temporarily spilling the river into the Grand Coulee; mountains have slid into it, and humans have dammed it. All these changes have left work for the river to do.

For much of human history, work and energy have linked humans and rivers, humans and nature. But today, except when disaster strikes, when a hurricane hits, or earthquakes topple our creations, or when a river unexpectedly rises and sweeps away the results of our effort and labor, we forget the awesome power — the energy — of nature. There is little in our day-to-day life to preserve the connection. Machines do most of our work; we disparage physical labor and laborers. The link between our work and nature's work has weakened. We no longer understand the world through labor. Once the energy of the Columbia River was felt in human bones and sinews; human beings knew the river through the work the river demanded of them.

Early-nineteenth-century accounts of the Columbia can be read in many ways, but they are certainly all accounts of work, sweat, exhaustion, and fear. The men of the early nineteenth century who wrote the Lewis and Clark journals and the accounts of the Astorian trading post, the North West Company and Hudson's Bay Company, knew the energy of the river. They had to expend their own energy to move up, down, and across it. Alexander Ross's marvelous Adventures of the First Settlers on the Oregon or Columbia River, a narrative of the arrival of the Astorians and the establishment of the fur-trading outpost of Astoria in 1811, can serve as a primer on the Columbia as an energy system during a time when human beings — Indian and white — had only the wind and the strength of their own muscles to match against the powerful currents of the river.

"The mouth of the Columbia River," Ross wrote, "is remarkable for its sand bars and high surf at all seasons, but more particularly in the spring and fall, during the equinoctial gales." The shoals and sandbars at the Columbia's mouth are relicts of its work and energy. In areas without strong tidal action a river deposits the load it carries to its mouth as a delta, but the Columbia emerges into the Pacific in an area of strong tides and persistent storms.

The river's current and the tides battle at the Columbia's mouth and prevent the formation of a delta. At full flood, Captain Charles Wilkes wrote in 1841, one could "scarcely have an idea of its flow how swollen it is, and to see the huge trunks of thick gigantic forests borne like chips on its bosom astonishes one." During ebb tides the river pushes its freshwater out many miles into the sea. The tides, in turn, are felt as high as 140 miles upriver when the Columbia's water level is at its fall and winter low. This pushing and pulling produces a set of sandbars and islands at the river's mouth. Ocean currents and tides force themselves against the bars with "huge waves and foaming breakers." The result is "a white foaming sheet for many miles, both south and north of the mouth of the river, forming as it were an impracticable barrier to the entrance, and threatening with instant destruction everything that comes near it." To enter the river, ships, powered only by wind and aided by the tide, or boats and canoes powered by human muscle, had to pass through this barrier.

During the Astorians' own terrible entry into the Columbia in 1811, they sent out small boats to find a channel into the river for their ship, the Tonquin. In Ross's dramatic telling, the Astorians watched as the Tonquin's first officer, Ebenezer Fox, protested to Captain Jonathan Thorn that the seas were "too high for any boat to live in." In reply Thorn only taunted Fox: "Mr. Fox, if you are afraid of water, you should have remained at Boston." Fox's uncle had died at the mouth of the Columbia. In despair Fox announced that he was "going to lay my bones with his." He shook hands with the Astorians and, getting into the boat, shouted, "Farewell, my friends ... we will perhaps meet again in the next world." Fox's crew was inexperienced and the sea violent. Not one hundred yards from the ship the boat became unmanageable. The waves hit the craft broadside, whirled it like a top, and "tossing on the crest of a huge wave, [it would] sink again for a time and disappear all together." Fox hoisted a flag to signal his distress, but the Tonquin turned about, and they "saw the ill-fated boat no more."

Ross himself took part in a second attempt, and he discovered more immediately the experience of pitting human energy against the energy focused at the mouth of the river. As they first approached the bar with its "terrific chain of breakers," the "fearful suction or current" gripped the boat before they realized what had happened. The second officer, Mr. Mumford, called for them to match their strength against that of the river and sea: "Let us turn back, and pull for your lives. Pull hard, or you are all dead men." They pulled hard and survived, but this attempt to enter the river and two more failed. The Tonquin eventually made the passage across the bar, but only after eight men had died.

In their ordeal at the bar the Astorians had confronted storms, sandbars, and currents; men had labored and died. But wave, water, and wind — and human labor — can be represented in ways beyond the immediacy of actual experience. We can abstract them to a single entity: energy. There is a physics to the Tonquin's drama at the river's mouth, and it leads outward beyond the earth to the sun and the moon. Lunar gravitation causes the tides, but virtually all the rest of the energy manifest at the Columbia's mouth originates in the sun. The sun, in effect, provides fuel for a giant atmospheric heat engine which evaporates water from the oceans and produces winds that move the moisture over land. As the clouds cool, the moisture falls as rain. Without solar energy to move the water inland and uphill, rivers would never begin; without gravity to propel the water downhill back toward the ocean, rivers would never flow. In a real sense the Columbia begins everywhere that the rain that eventually enters it falls. The Columbia gathers its water from an area of 258,200 square miles, but not all that water finds its way into the river as it flows 1,214 miles to the sea. Some of it is lost through transpiration and use in plant tissues; some is lost through evaporation.

Physicists define energy as the capacity to do work. Work, in turn, is the product of a force acting on a body and the distance the body is moved in the direction of the force. Push a large rock and you are expending energy and doing work; the amount of each depends on how large the rock and how far you push it. The weight and flow of water produce the energy that allows rivers to do the work of moving rock and soil: the greater the volume of water in the river and the steeper the gradient of its bed, the greater its potential energy.

In fact, however, neither the Columbia nor any other river realizes all of its potential energy as work. Indeed, only about 2 percent of the river's potential energy results in work: the erosion, transportation, and deposition of matter. About 98 percent of the river's kinetic energy is expended in friction as the moving water rubs against itself, its bed, and its bank. This energy is dissipated as heat within the river.

Engineers can measure the potential energy and the kinetic energy of the Columbia with some precision, but early voyagers like Ross recognized the power — the energy — by more immediate if cruder measures. They measured it by the damage it did as it threw ships or boats or bodies against rocks or sandbars. And they measured it by the work they had to perform to counter the river's work. They knew something we have obscured and are only slowly recovering: labor rather than "conquering" nature involves human beings with the world so thoroughly that they can never be disentangled.

During the forty-two days of Ross's first trip upriver from Astoria, the river demonstrated its power again and again. The river upset the Astorians' boat; it dunked the men, drenched them, grounded them, and delayed them. But mostly the river made them work, sweat, and hurt. "On the twenty-third [of the month] ... we started stemming a strong and almost irresistible current ..." The "current assumed double force, so that our paddles proved almost ineffectual; and to get on we were obliged to drag ourselves from point to point by laying hold of bushes and the branches of overhanging trees ..." "The burning sun of yesterday and the difficulty of stemming the rapid current had so reduced our strength that we made but little headway today." "We were again early at work, making the best of our way against a turbulent and still increasing current."

Ross had reached the Cascades, the rapids where the Columbia bursts out of the mountains. Above the Cascades were even worse rapids at the Dalles, and the Dalles commenced with Celilo Falls. Here the current was too strong and travelers had to portage.

Above Celilo Falls, Ross's litany of labor continued. "The current was strong and rapid the whole day." "[We] found the current so powerful that we had to lay our paddles aside and take to the lines." "The wind springing up, we hoisted sail, but found the experiment dangerous, owing to the rapidity of the current." And so they proceeded through Priest Rapids, where the "water rushes with great violence," and through lesser rapids where a whirlpool grabbed a boat, spun it several times, and sent it careening down a chain of cascades. Ross stopped at the Okanogan River. If he had gone farther, more rapids awaited: Kettle Falls, and farther still, the Dalles des Morts. The largest tributaries of the Columbia, the Snake and the Willamette, contributed falls and rapids of their own.

So thoroughly did Ross come to measure the river by the labor he pitted against it, by the feel of his body, by the difficulties it presented, that his return downstream with the river's energy speeding him back to Astoria from Fort Okanogan could be contained in a sentence. "On the twenty-sixth of February, we began our homeward journey, and spent just twenty-five days on our way back."

With so much energy deployed against them, it was remarkable that voyagers could proceed at all. The first white fur traders built what they called canoes out of cedar planks caulked with gum. Such boats could not stand the rapids. The Astorians longed for another Indian technology — the more familiar birchbark canoes of the eastern rivers. The Northwesters who succeeded the Astorians actually imported the birchbark necessary to make birchbark canoes.

Efficient movement on the river demanded not just muscle power but knowledge and art. The fur traders, fortunately, had examples of both before them. In the Indians' cedar canoes, efficiency and art met and became one. The Indians carved each of their canoes from a single log; Gabriel Franchere, another of the original Astorians, reported that the largest canoes were thirty feet long and five feet wide. And as Robert Stuart, also an Astorian, wrote: "If perfect symmetry, smoothness and proportion constitute beauty, they surpass anything I ever beheld." Some were as "transparent as oiled paper."

The art and knowledge embodied in the canoe demanded an equal knowledge of the river. Lewis and Clark were repeatedly amazed at the conditions Indians ventured out in, and William Clark had thought them "the best canoe navigators I ever Saw." Stuart concurred: The Indians were "the most expert paddle men any of us had ever seen." If the river overpowered their canoe, they would spring "into the water (more like amphibious animals than human beings), right and empty her, when with the greatest composure, they again get in and proceed." But the clearest mark of knowledge and skill was when nothing happened, when Indians knew which paths through the river were the most efficient and least demanding of human energy.

The river's lessons that the Astorians learned, the North West Company men would have to relearn. The poverty of the boats and the inability to maneuver them that the governor-in-chief of the Hudson's Bay Company, George Simpson, found on his first voyage of inspection to the Columbia posts in 1824 provoked a spluttering astonishment that still resonates in his journal. "There is not," he wrote, "a Boat at the Establishment [Fort George] fit to cross the River in bad Weather nor a person competent to sail one." Simpson's attempt to cross in a boat with rotten rigging had proceeded only a mile before everyone on board was bailing with hats and buckets. The boat struck a sandbar and drifted off, with the crew rowing madly against an outgoing tide until they "exhausted their strength at the Oars." They were only saved when the tide turned and swept them back into the river, where they made shore, abandoned the boat, and walked back to the fort. Farther upriver, however, where Canadian boatmen were more in their element, the British naturalist David Douglas could in 1826 admire the "indescribable coolness" with which Canadians shot the rapids.

The Canadians showed Douglas that the knowledge of how and where to use the boats was as important as the boats themselves; the complexities of the energy system of the river could be made to work for as well as against travelers. "Our Indians," the American explorer Charles Wilkes wrote in 1841, "cunningly kept close to the shore & thus took advantage of all the eddies." Such knowledge was initially a bodily knowledge felt and mastered through experience and labor. Even when learned from others, the messages sent through nerve and muscle constantly validated or modified acquired knowledge. Knowledge of the river was in large part knowing how its velocity varied and where it was turbulent. With proper experience, traveling against the current on the Columbia demanded less expenditure of human energy than traveling overland. The hydraulics of the river sketched out a map of energy; this geography of energy was also a geography of labor.

George Simpson saw the world with the eyes of an adventurous accountant. He gauged rivers, as he judged his men and the Indians, by the work they did, the expense they required, and the profit the company might derive from them. In 1824, on first entering the Columbia near the Cedar River, he had found the current of the Columbia "so strong that at first sight one would scarcely suppose it possible to stem it even with the Towline." But "on more attentive observation it is found that in every reach there is a strong back current or eddy which renders it easy of ascent."

The Columbia, as Simpson noted, does not travel at a constant speed along its bed. Friction divides its very current against itself. It divides it horizontally. Where the water meets earth and rock along the river's bed and banks, friction slows the current. Velocity increases away from the shore. The river's current also varies vertically. The river, in effect, is composed of layers. It is the fluid equivalent of a piece of plywood, but in the river's case each layer moves at a different velocity. The layer of greatest velocity is always below the surface. With a constant depth of flow, velocity increases toward the center of the river and rises toward the surface. Where the channel is asymmetrical, maximum velocity shifts toward the deeper side.


(Continues...)

Excerpted from The Organic Machine by Richard White. Copyright © 1995 Richard White. Excerpted by permission of Hill and Wang.
All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.
Excerpts are provided by Dial-A-Book Inc. solely for the personal use of visitors to this web site.

Table of Contents

Contents

Title Page,
INTRODUCTION,
CHAPTER 1 - Knowing Nature through Labor: Energy, Salmon Society on the Columbia,
CHAPTER 2 - Putting the River to Work,
CHAPTER 3 - The Power of the River,
CHAPTER 4 - Salmon,
ALSO BY RICHARD WHITE,
BIBLIOGRAPHICAL ESSAY,
INDEX,
Notes,
Copyright Page,

From the B&N Reads Blog

Customer Reviews