Organic Thin Film Transistor Integration: A Hybrid Approach / Edition 1

Organic Thin Film Transistor Integration: A Hybrid Approach / Edition 1

by Flora Li, Arokia Nathan, Yiliang Wu, Beng S. Ong
     
 

Research on organic electronics (or plastic electronics) is driven by the need to create low-cost electronic devices that are lightweight, mechanically robust and structurally flexible. With the remarkable improvement in the performance of organic electronic materials during the past decade, organic electronics now appeal to innovative, practical, and

See more details below

Overview

Research on organic electronics (or plastic electronics) is driven by the need to create low-cost electronic devices that are lightweight, mechanically robust and structurally flexible. With the remarkable improvement in the performance of organic electronic materials during the past decade, organic electronics now appeal to innovative, practical, and broad-based applications requiring large-area coverage, lightweight and mechanical flexibility, which range from large-area and flexible displays to sensors, images, electronic identification and security tracking devices. This book presents a comprehensive investigation of the production and application of a variety of polymer based transistor devices and circuits. It begins with a detailed overview of Organic Thin Film Transistors (OTFTs) and discusses the various possible fabrication methods reported so far. This is followed by two major sections on the choice, optimization and implementation of the gate dielectric material. Details of the effects of processing on the efficiency of the contacts are then provided. The book concludes with a chapter on the integration of such devices to produce a variety of OTFT based circuits and systems.

From the contents:

  • Introduction
  • Organic Thin Film Transistors (OTFT): Overview
  • OTFT Integration Strategies
  • Gate Dielectric by Plasma Enhanced Chemical Vapor Deposition (PECVD)
  • Dielectric Interface Engineering
  • Contact Interface Engineering
  • OTFT Circuits and Systems
  • Outlook and Future Challenges

Read More

Product Details

ISBN-13:
9783527409594
Publisher:
Wiley
Publication date:
06/07/2011
Pages:
270
Product dimensions:
6.90(w) x 9.60(h) x 0.70(d)

Related Subjects

Meet the Author

Flora M. Li is a Research Associate at the Centre of Advanced Photonics and Electronics (CAPE) at the University of Cambridge, UK. She received her Ph.D. degree in Electrical and Computer Engineering from the University of Waterloo, Canada in 2008. She was a Visiting Scientist at Xerox Research Centre of Canada (XRCC) from 2005-2008. Her research interests are in the field of nano- and thin-film technology for applications in large area and flexible electronics, including displays, sensors, photovoltaics, circuits and systems. She has co-authored a book entitled CCD Image Sensors in Deep-Ultraviolet (2005), and published in various scientific journals.

Arokia Nathan holds the Sumitomo/STS Chair of Nanotechnology at the London Centre for Nanotechnology, University College London, UK. He is also the CTO of Ignis Innovation Inc., Waterloo, Canada, a company he founded to commercialize technology on thin film silicon backplanes on rigid and flexible substrates for large area electronics. He received his Ph.D. in Electrical Engineering from the University of Alberta, Canada, in 1988. In 1987, he joined LSI Logic Corp., Santa Clara, CA, USA where he worked on advanced multi-chip packaging techniques. Subsequently, he was at the Institute of Quantum Electronics, ETH Zürich, Switzerland. In 1989, he joined the Department of Electrical and Computer Engineering, University of Waterloo. In 1995, he was a Visiting Professor at the Physical Electronics Laboratory, ETH Zürich, Switzerland. In 1997 he held the DALSA/NSERC Industrial Research Chair in sensor technology, and was a recipient of the 2001 Natural Sciences and Engineering Research Council E.W.R. Steacie Fellowship. In 2004 he was awarded the Canada Research Chair in nano-scale flexible circuits. In 2005/2006, he was a Visiting Professor in the Engineering Department, University of Cambridge, U.K. In 2006, he joined the London Centre for Nanotechnology and is a recipient of the Royal Society Wolfson Research Merit Award. He has published extensively in the field of sensor technology, CAD, and thin film transistor electronics, and has over 40 patents filed/awarded. He is the co-author of two books, Microtransducer CAD and CCD Image Sensors in Deep-Ultraviolet, published in 1999 and 2005, respectively, and serves on technical committees and editorial boards at various capacities.

Read More

Table of Contents

1. Introduction
1.1 Organic Electronics: History and Market
2. Organic Thin Film Transistors (OTFT): Overview
2.1 Organic Semiconductor Overview
2.2 OTFT Operation and Characteristics
2.3 OTFT Device Architecture
2.4 OTFT Device Material Selection
2.5 Summary
3. OTFT Integration Strategies
3.1 Technological Challenge inOTFT Integration
3.2 Overview of Processing and Fabrication Techniques
3.3 OTFT Fabrication Schemes
3.4 Summary
4. Gate Dielectric by Plasma Enhanced Chemical Vapor Deposition (PECVD)
4.1 Overview of Gate Dielectrics
4.2 Experimental Details and Characterization Methods
4.3 Material Characterization of PECVD SiNx Films
4.4 Electrical Characterization of OTFTs with PECVD Gate Dielectrics
4.5 Summary
5. Dielectric Interface Engineering
5.1 Background
5.2 Experimental Details
5.3 Impact of Dieletric Surface Treatments
5.4 Impact of Oxygen Plasma Exposure Conditions
5.5 Summary
6. Contact Interface Engineering
6.1 Background
6.2 Experimental Details
6.3 Impact of Contact Surface Treatment by Thiol SAM
6.4 Impact of Execution Sequence of Surface Treatment
6.5 Summary
7. OTFT Circuits and Systems
7.1 OTFT Requirements for Circuit Applications
7.2 Applications
7.3 Circuit Demonstration
7.4 Summary, Contributions, and Outlook
8. Outlook and Future Challenges

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >