Organosilanes in Radical Chemistry: Principles, Methods and Applications / Edition 1

Organosilanes in Radical Chemistry: Principles, Methods and Applications / Edition 1

by Chryssostomos Chatgilialoglu
     
 

ISBN-10: 047149870X

ISBN-13: 9780471498704

Pub. Date: 02/11/2005

Publisher: Wiley

In recent years silicon-centered radicals have played an important role in organic synthesis, polymer chemistry and material sciences. The aim of this book is to offer for the first time a description of silyl radicals within an interdisciplinary context, connecting structural characteristics and chemical properties to their application in different areas of

…  See more details below

Overview

In recent years silicon-centered radicals have played an important role in organic synthesis, polymer chemistry and material sciences. The aim of this book is to offer for the first time a description of silyl radicals within an interdisciplinary context, connecting structural characteristics and chemical properties to their application in different areas of chemistry.

  • The first time different aspects of silyl radicals have been brought together
  • Excellent reference tool for experienced practitioners of radical and/or silicon chemistry
  • Presents various aspects of these intermediates in an original, comprehensive fashion
This book is essential for anyone working in free radical and/or silicon chemistry as well as for those who want to approach these fields for the first time.

Product Details

ISBN-13:
9780471498704
Publisher:
Wiley
Publication date:
02/11/2005
Pages:
240
Product dimensions:
6.22(w) x 9.55(h) x 0.72(d)

Table of Contents

Preface.

Acknowledgements.

1 Formation and Structures of Silyl Radicals.

1.1 Methods of Generation of Silyl Radicals.

1.2 Structural Properties of Silyl Radicals.

1.2.1 Chemical Studies.

1.2.2 Electron Paramagnetic Resonance (EPR) Spectra.

1.2.3 Crystal Structures.

1.2.4 UV–Visible Spectra.

1.2.5 Theoretical Studies.

1.3 References.

2 Thermochemistry.

2.1 General Considerations.

2.2 Bond Dissociation Enthalpies.

2.2.1 Radical Kinetics.

2.2.2 Photoacoustic Calorimetry.

2.2.3 Theoretical Data.

2.2.4 Derived Bond Dissociation Energies.

2.3 Ion Thermochemistry.

2.3.1 Negative-ion Cycles.

2.3.2 Hydride-affinity Cycles.

2.4 References.

3 Hydrogen Donor Abilities of Silicon Hydrides.

3.1 Carbon-centred Radicals.

3.1.1 Primary Alkyl Radicals and Free-Radical Clock Methodology.

3.1.2 Other Types of Carbon-centred Radicals.

3.2 Nitrogen-centred Radicals.

3.3 Oxygen-centred Radicals.

3.3.1 Alkoxyl Radicals.

3.3.2 Peroxyl Radicals.

3.3.3 Aryloxyl and Aroyloxyl Radicals.

3.4 Sulfur-centred Radicals.

3.5 Ketone Triplets.

3.6 Hydrogen Atom: An Example of Gas-phase Kinetics.

3.7 Theoretical Approaches.

3.8 References.

4 Reducing Agents.

4.1 General Aspects of Radical Chain Reactions.

4.1.1 Radical–Radical Reactions.

4.2 Radical Initiators.

4.3 Tris(trimethylsilyl)silane.

4.3.1 Dehalogenations.

4.3.2 Reductive Removal of Chalcogen Groups (RS and RSe).

4.3.3 Deoxygenation of Alcohols (Barton–McCombie Reaction).

4.3.4 Miscellaneous Reactions.

4.3.5 Appendix.

4.4 Other Silicon Hydrides.

4.4.1 Trialkylsilanes.

4.4.2 Phenyl Substituted Silicon Hydrides.

4.4.3 Silyl Substituted Silicon Hydrides.

4.4.4 Alkylthio Substituted Silicon Hydrides.

4.5 Silicon Hydride/Thiol Mixture.

4.6 Silanethiols.

4.7 Silylated Cyclohexadienes.

4.8 References.

5 Addition to Unsaturated Bonds.

5.1 Carbon–Carbon Double Bonds.

5.1.1 Formation of Silyl Radical Adducts.

5.1.2 Hydrosilylation of Alkenes.

5.2 Carbon–Carbon Triple Bonds.

5.2.1 Formation of Silyl Radical Adducts.

5.2.2 Hydrosilylation of Alkynes.

5.3 Carbon–Oxygen Double Bonds.

5.3.1 Formation of Silyl Radical Adducts.

5.3.2 Hydrosilylation of Carbonyl Groups.

5.3.3 Radical Brook Rearrangement.

5.4 Other Carbon–Heteroatom Multiple Bonds.

5.5 Cumulenes and Hetero-Cumulenes.

5.6 Heteroatom–Heteroatom Multiple Bonds.

5.7 References.

6 Unimolecular Reactions.

6.1 Cyclization Reactions of Silyl Radicals.

6.1.1 Five-membered Ring Expansion.

6.2 Aryl Migration.

6.3 Acyloxy Migration.

6.4 Intramolecular Homolytic Substitution at Silicon.

6.5 Homolytic Organosilicon Group Transfer.

6.6 References.

7 Consecutive Radical Reactions.

7.1 Basic Concepts of Carbon–Carbon Bond Formation.

7.2 Intermolecular Formation of Carbon–Carbon Bonds.

7.3 Intramolecular Formation of Carbon–Carbon Bonds (Cyclizations).

7.3.1 Construction of Carbocycles.

7.3.2 Construction of Cyclic Ethers and Lactones.

7.3.3 Construction of Cyclic Amines and Lactames.

7.4 Formation of Carbon–Heteroatom Bonds.

7.5 Other Useful Radical Rearrangements.

7.6 Allylations.

7.7 Application to Tandem and Cascade Radical Reactions.

7.8 References.

8 Silyl Radicals in Polymers and Materials.

8.1 Polysilanes.

8.1.1 Poly(hydrosilane)s and Related Silyl Radicals.

8.2 Oxidation Studies on Silyl-substituted Silicon Hydrides.

8.2.1 Poly(hydrosilane)s.

8.2.2 (Me3Si)3SiH and (Me3Si)2Si(H)Me as Model Compounds.

8.3 Functionalization of Poly(hydrosilane)s.

8.3.1 Halogenation.

8.3.2 Addition of Unsaturated Compounds.

8.3.3 Other Useful Radical Reactions.

8.4 Silylated Fullerenes.

8.5 Radical Chemistry on Silicon Surfaces.

8.5.1 Oxidation of Hydrogen-terminated Silicon Surfaces.

8.5.2 Halogenation of HwSi(111).

8.5.3 Addition of Unsaturated Compounds on HwSi(111).

8.5.4 Addition of Alkenes on Si(100) Surfaces.

8.5.5 Some Examples of Tailored Experiments on Monolayers.

8.6 References.

List of Abbreviations.

Subject Index.

Read More

Customer Reviews

Average Review:

Write a Review

and post it to your social network

     

Most Helpful Customer Reviews

See all customer reviews >