Our Final Hour: A Scientist's Warning: How Terror, Error, and Environmental Disaster Threaten Humankind's Future in this Century -- on Earth and Beyond

Our Final Hour: A Scientist's Warning: How Terror, Error, and Environmental Disaster Threaten Humankind's Future in this Century -- on Earth and Beyond

by Martin Rees

A scientist known for unraveling the complexities of the universe over millions of years, Sir Martin Rees now warns that humankind is potentially the maker of its own demise--and that of the cosmos. Though the twenty-first century could be the critical era in which life on Earth spreads beyond our solar system, it is just as likely that we have endangered the


A scientist known for unraveling the complexities of the universe over millions of years, Sir Martin Rees now warns that humankind is potentially the maker of its own demise--and that of the cosmos. Though the twenty-first century could be the critical era in which life on Earth spreads beyond our solar system, it is just as likely that we have endangered the future of the entire universe. With clarity and precision, Rees maps out the ways technology could destroy our species and thereby foreclose the potential of a living universe whose evolution has just begun.Rees boldly forecasts the startling risks that stem from our accelerating rate of technological advances. We could be wiped out by lethal "engineered" airborne viruses, or by rogue nano-machines that replicate catastrophically. Experiments that crash together atomic nuclei could start a chain reaction that erodes all atoms of Earth, or could even tear the fabric of space itself. Through malign intent or by mistake, a single event could trigger global disaster. Though we can never completely safeguard our future, increased regulation and inspection can help us to prevent catastrophe. Rees's vision of the infinite future that we have put at risk--a cosmos more vast and diverse than any of us has ever imagined--is both a work of stunning scientific originality and a humanistic clarion call on behalf of the future of life.

Editorial Reviews

London Daily Mail
One of the most provocative and unsettling books I have read for many years . . . That a scientist so distinguished as Rees should air these fierce anxieties is a sign that something is amiss.—J. G. Ballard, author of Crash
Boston Herald
A Cambridge University professor and the United Kingdom's Royal Astronomer, Rees provides a short but alarming overview of frightening doomsday scenarios that could end civilization.
Toronto Globe and Mail
[Rees's] cautionary tale comes as a useful counterbalance to some of the overly optimistic books recently penned by scientists. . . Our Final Hour neither worships nor condemns modern science, but it does offer a clear, concise account of what may be our most urgent concerns in the 21st century.
The Baltimore Sun
Heady, scary-and very scholarly-stuff . . . Rees writes with beautiful simplicity. This is a conversational book, totally accessible to a general reader.
Associated Press
Rees invites us to also consider developments that many of us probably never thought about, including: Could environmental degradation lead to a "war for water"? Could machines-designed plants crowd natural plants out of the ecosystem? These ideas may inspire skepticism, but within Rees' logic, they seem far from impossible. But Rees does not simply outline his theories. Throughout, he repeatedly implies something else: We can do something to help.
San Francisco Chronicle
Doomsday books have appeared for centuries. But Rees' book is unique, and not only because of his fame as a Cambridge University professor who is not prone to making scary public statements.
The New York Times
In a book whose influences range from science fiction writers like H. G. Wells, Kurt Vonnegut and even Tom Clancy to modern scientists, Rees throws every possible calamity into the pot -- some credible, some not. The point is not that any of these particular disasters will befall us, but that something might. And scientists, he suggests, have sometimes been more interested in public relations than in really leveling with the rest of us about the odds we face. — Dennis Overbye
Dennis Overbye
The choices we make in the next few decades, Rees contends, could decide the fate of life not only on Earth but beyond, either ensuring its survival-if we can diversify into space-or dooming it forever. . . . Fortunately, Rees is too good a scientist to be content with telling only one side of the story.,br>—NYT science correspondent in The New York Times Book Review
J. G. Ballard
One of the most provocative and unsettling books I have read for many years . . . That a scientist so distinguished as Rees should air these fierce anxieties is a sign that something is amiss.
author of Crash (in the London Daily Mail)
The Washington Post
[Rees] proceeds to catalog, chapter by chapter, everything he's ever read about what could go colossally wrong this century. And you've got to hand it to him: It's hard to believe he has missed anything yet imaginable. Climate change, asteroid collision, flesh-eating Ebola viruses assembled and released by madmen, biotech accidentally run amok, swarms of sub-microscopic robots run amok, computers smarter than humans run amok -- it's all here. So are quite a few entertaining and astoundingly exotic catastrophes that could theoretically result from experiments in Rees's specialty, physics -- as in the above-mentioned universe tearing. — Joel Garreau
Publishers Weekly
Nano-machines stand poised to revolutionize technology and medicine, but what happens if these minuscule beasties break their leash and run amok? Rees, the U.K.'s Astronomer Royal and prolific author (Just Six Numbers; Our Cosmic Habitat), warns that the 21st century may well witness the extinction of mankind, a doomsday more likely to be caused by human error than by a natural catastrophe. Bioterrorists are the most widely publicized threat at the moment, but well-intentioned scientists, Rees says, are capable of accidentally wiping out mankind via genetically engineered superpathogens that create unprecedented pandemics, or even through something as weird as high-energy particle experiments that backfire and cause the universe to implode. Rees poses some hard questions about scientists' responsibility to forsake research that might lead to a malevolent genie being let out of its bottle and even to restrict the sharing of scientific information to prevent it from getting into the wrong hands. Ultimately, though, Rees sounds more alarmist than precautionary. Some may find him overly optimistic on what science will be capable of doing in the next quarter century. Rees makes some provocative points, but the book falls short of what readers expect from a scientist of his stature. (May 5) Copyright 2003 Reed Business Information.

Product Details

Basic Books
Publication date:
Product dimensions:
5.82(w) x 8.58(h) x 0.88(d)

Read an Excerpt


A Scientist's Warning: How Terror, Error, and Environmental Disaster Threaten Humankind's Future in This Century-On Earth and Beyond
By Martin Rees

Basic Books

Copyright © 2003 Martin Rees
All right reserved.

ISBN: 0465068626

Chapter One


The twentieth century brought us the bomb, and the nuclear threat will never leave us; the short-term threat from terrorism is high on the public and political agenda; inequalities in wealth and welfare get ever wider. My primary aim is not to add to the burgeoning literature on these challenging themes, but to focus on twenty-first century hazards, currently less familiar, that could threaten humanity and the global environment still more.

Some of these new threats are already upon us; others are still conjectural. Populations could be wiped out by lethal "engineered" airborne viruses; human character may be changed by new techniques far more targeted and effective than the nostrums and drugs familiar today; we may even one day be threatened by rogue nanomachines that replicate catastrophically, or by superintelligent computers.

Other novel risks cannot be completely excluded. Experiments that crash atoms together with immense force could start a chain reaction that erodes everything on Earth; the experiments could even tear the fabric of space itself, an ultimate "Doomsday" catastrophe whose fallout spreads at the speed of light to engulf the entire universe. These latter scenarios may be exceedingly unlikely, but they raise in extreme form the issue of who should decide, and how, whether to proceed with experiments that have a genuine scientific purpose (and could conceivably offer practical benefits), but that pose a very tiny risk of an utterly calamitous outcome.

We still live, as all our ancestors have done, under the threat of disasters that could cause worldwide devastation: volcanic supereruptions and major asteroid impacts, for instance. Natural catastrophes on this global scale are fortunately so infrequent, and therefore so unlikely to occur within our lifetime, that they do not preoccupy our thoughts, nor give most of us sleepless nights. But such catastrophes are now augmented by other environmental risks that we are bringing upon ourselves, risks that cannot be dismissed as so improbable.

During the Cold War years, the main threat looming over us was an all-out thermonuclear exchange, triggered by an escalating superpower confrontation. That threat was apparently averted. But many experts-indeed, some who themselves controlled policy during those years-believed that we were lucky; some thought that the cumulative risk of Armageddon over that period was as much as fifty percent. The immediate danger of all-out nuclear war has receded. But there is a growing threat of nuclear weapons being used sooner or later somewhere in the world.

Nuclear weapons can be dismantled, but they cannot be uninvented. The threat is ineradicable, and could be resurgent in the twenty-first century: we cannot rule out a realignment that would lead to standoffs as dangerous as the Cold War rivalry, deploying even bigger arsenals. And even a threat that seems, year by year, a modest one mounts up if it persists for decades. But the nuclear threat will be overshadowed by others that could be as destructive, and far less controllable. These may come not primarily from national governments, not even from "rogue states," but from individuals or small groups with access to ever more advanced technology. There are alarmingly many ways in which individuals will be able to trigger catastrophe.

The strategists of the nuclear age formulated a doctrine of deterrence by "mutually assured destruction" (with the singularly appropriate acronym MAD). To clarify this concept, real-life Dr. Stangeloves envisaged a hypothetical "Doomsday machine," an ultimate deterrent too terrible to be unleashed by any political leader who was one hundred percent rational. Later in this century, scientists might be able to create a real nonnuclear Doomsday machine. Conceivably, ordinary citizens could command the destructive capacity that in the twentieth century was the frightening prerogative of the handful of individuals who held the reins of power in states with nuclear weapons. If there were millions of independent fingers on the button of a Doomsday machine, then one person's act of irrationality, or even one person's error, could do us all in.

Such an extreme situation is perhaps so unstable that it could never be reached, just as a very tall house of cards, though feasible in theory, could never be built. Long before individuals acquire a "Doomsday" potential-indeed, perhaps within a decade-some will acquire the power to trigger, at unpredictable times, events on the scale of the worst present-day terrorist outrages. An organised network of A1 Qaeda-type terrorists would not be required: just a fanatic or social misfit with the mindset of those who now design computer viruses. There are people with such propensities in every country-very few, to be sure, but bio- and cyber-technologies will become so powerful that even one could well be too many.

By mid-century, societies and nations may have drastically realigned; people may live very differently, survive to a far greater age, and have different attitudes from those of the present (maybe modified by medication, chip implants, and so forth). But one thing is unlikely to change: individuals will make mistakes, and there will be a risk of malign actions by embittered loners and dissident groups. Advanced technology will offer new instruments for creating terror and devastation; instant universal communications will amplify their societal impact. Catastrophes could arise, even more worryingly, simply from technical misadventure. Disastrous accidents (for instance, the unintended creation or release of a noxious fast-spreading pathogen, or a devastating software error) are possible even in well-regulated institutions. As the threats become graver, and the possible perpetrators more numerous, disruption may become so pervasive that society corrodes and regresses. There is a longer-term risk even to humanity itself.

Science is emphatically not, as some have claimed, approaching its end; it is surging ahead at an accelerating rate. We are still flummoxed about the bedrock nature of physical reality, and the complexities of life, the brain, and the cosmos. New discoveries, illuminating all these mysteries, will engender benign applications; but will also pose new ethical dilemmas and bring new hazards. How will we balance the multifarious prospective benefits from genetics, robotics, or nanotechnology against the risk (albeit smaller) of triggering utter disaster?

My special scientific interest is cosmology: researching our environment in the widest conceivable perspective. This might seem an incongruous viewpoint from which to focus on practical terrestrial issues: in the words of Gregory Benford, a fiction writer who is also an astrophysicist, study of the "grand gyre of worlds ... imbues, and perhaps afflicts, astronomers with a perception of how like mayflies we are." But few scientists are unworldly enough to fit Benford's description: a preoccupation with near-infinite spaces doesn't make cosmologists especially "philosophical" in coping with everyday life; nor are they less engaged with the issues confronting us here on the ground, today and tomorrow. My subjective attitude was better expressed by the mathematician and philosopher Frank Ramsey, a member of the same College in Cambridge (King's) to which I now belong: "I don't feel the least humble before the vastness of the heavens. The stars may be large, but they cannot think or love; and these are qualities which impress me far more than size does.... My picture of the world is drawn in perspective, and not like a model drawn to scale. The foreground is occupied by human beings, and the stars are all as small as threepenny bits."

A cosmic perspective actually strengthens our concerns about what happens here and now, because it offers a vision of just how prodigious life's future potential could be. Earth's biosphere is the outcome of more than four billion years of Darwinian selection: the stupendous time spans of the evolutionary past are now part of common culture. But life's future could be more prolonged than its past. In the aeons that lie ahead, even more marvellous diversity could emerge, on and beyond Earth. The unfolding of intelligence and complexity could still be near its cosmic beginnings.

A memorable early photograph taken from space depicted "Earthrise" as viewed from a spacecraft orbiting the Moon. Our habitat of land, oceans, and clouds was revealed as a thin delicate glaze, its beauty and vulnerability contrasting with the stark and sterile moonscape on which the astronauts left their footprints. We have had these distant images of the entire Earth only for the last four decades. But our planet has existed for more than a hundred million times longer than this. What transformations did it undergo during this cosmic time span?

About 4.5 billion years ago our Sun condensed from a cosmic cloud; it was then encircled by a swirling disk of gas. Dust in this disk agglomerated into a swarm of orbiting rocks, which then coalesced to form the planets. One of these became our Earth: the "third rock from the Sun." The young Earth was buffeted by collisions with other bodies, some almost as large as the planets themselves: one such impact gouged out enough molten rock to make the Moon. Conditions quietened and Earth cooled. The next transformations distinctive enough to be seen by a faraway observer would have been very gradual. Over a prolonged time span, more than a billion years, oxygen accumulated in Earth's atmosphere, a consequence of the first unicellular life. Thereafter, there were slow changes in the biosphere, and in the shape of the land masses as the continents drifted. The ice cover waxed and waned: there might even have been episodes when the entire Earth froze over, appearing white rather than pale blue.

The only abrupt worldwide changes were triggered by major asteroid impacts or volcanic supereruptions. Occasional incidents like these would have flung so much debris into the stratosphere that for several years, until all the dust and aerosols settled again, Earth looked dark grey, rather than bluish white, and no sunlight penetrated down to land or ocean. Apart from these brief traumas, nothing happened suddenly: successions of new species emerged, evolved, and became extinct on geological time scales of millions of years.

But in just a tiny sliver of Earth's history-the last one-millionth part, a few thousand years-the patterns of vegetation altered much faster than before. This signalled the start of agriculture: the imprint on the terrain of a population of humans, empowered by tools. The pace of change accelerated as human populations rose. But then quite different transformations were perceptible, and these were even more abrupt. Within fifty years, little more than one hundredth of a millionth of Earth's age, the amount of carbon dioxide in the atmosphere, which over most of Earth's history had been slowly falling, began to rise anomalously fast. The planet became an intense emitter of radio waves (the total output from all TV, cellphone, and radar transmissions).

And something else happened, unprecedented in Earth's 4.5 billion year history: metallic objects-albeit very small ones, a few tonnes at most-left the planet's surface and escaped the biosphere completely. Some were propelled into orbits around Earth; some journeyed to the Moon and planets; a few even followed a trajectory that would take them deep into interstellar space, leaving the solar system for ever.

A race of scientifically advanced extraterrestrials watching our solar system could confidently predict that Earth would face doom in another six billion years, when the Sun, in its death throes, swells up into a "red giant" and vaporises everything remaining on our planet's surface. But could they have predicted this unprecedented spasm less than halfway through Earth's life-these human-induced alterations occupying, overall, less than a millionth of our planet's elapsed lifetime and seemingly occurring with runaway speed?

If they continued to keep watch, what might these hypothetical aliens witness in the next hundred years? Will a final squeal be followed by silence? Or will the planet itself stabilise? And will some of the small metallic objects launched from Earth spawn new oases of life elsewhere in the solar system, eventually extending their influences, via exotic life, machines, or sophisticated signals, far beyond the solar system, creating an expanding "green sphere" that eventually pervades the entire Galaxy?

It may not be absurd hyperbole-indeed, it may not even be an overstatement-to assert that the most crucial location in space and time (apart from the big bang itself) could be here and now. I think the odds are no better than fifty-fifty that our present civilisation on Earth will survive to the end of the present century. Our choices and actions could ensure the perpetual future of life (not just on Earth, but perhaps far beyond it, too). Or in contrast, through malign intent, or through misadventure, twenty-first century technology could jeopardise life's potential, foreclosing its human and posthuman future. What happens here on Earth, in this century, could conceivably make the difference between a near eternity filled with ever more complex and subtle forms of life and one filled with nothing but base matter.

Chapter Two


Twenty-first century science may alter human
beings themselves-not just how they live.
A superintelligent machine could be the last
invention humans ever make

In the past century, there were more changes than in the previous thousand years. The new century will see changes that will dwarf those of the last" This was an oft-expressed sentiment in the years 2000 and 2001, at the dawn of the new millennium; but these words actually date from more than one hundred years ago, and refer to the nineteenth and twentieth centuries, not the twentieth and twenty-first. They are from a 1902 lecture entitled "Discovery of the Future" presented by the young H.G. Wells at the Royal Institution in London.

By the end of the nineteenth century, Darwin and the geologists had already delineated, in crude outline, how Earth and its biosphere had evolved. Earth's full age was still not recognised, but estimates had risen to hundreds of millions of years. Wells himself was taught these ideas, still novel and inflammatory at that time, by Darwin's greatest advocate and propagandist, T.H. Huxley.

Wells's lecture was mainly in visionary mode. "Humanity," he said, "has come some way, and the distance we have travelled gives us some earnest of the way we have to go. All the past is but the beginning of a beginning; all that the human mind has accomplished is but the dream before the awakening."

Excerpted from OUR FINAL HOUR by Martin Rees Copyright © 2003 by Martin Rees
Excerpted by permission. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher.

Meet the Author

Matrin Rees is a leading researcher on cosmic evolution, black holes, and galaxies. He has himself originated many key ideas, and brings a unique perspective to themes discussed in this book. He is currently a Royal Society Research Professor, and Great Britain’s Astronomer Royal. Through based in Cambridge University for most of his career, he travels extensively, and collaborates wit many colleagues in the U.S. and elsewhere. He is an enthusiast for international collaboration in research, and is a member of several foreign academies.

Customer Reviews

Average Review:

Write a Review

and post it to your social network


Most Helpful Customer Reviews

See all customer reviews >